Toward Efficient Filter Privacy-Aware Content-Based Pub/Sub Systems

In recent years, the content-based publish/subscribe [12], [22] has become a popular paradigm to decouple information producers and consumers with the help of brokers. Unfortunately, when users register their personal interests to the brokers, the privacy pertaining to filters defined by honest subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2013-11, Vol.25 (11), p.2644-2657
Hauptverfasser: Weixiong Rao, Lei Chen, Tarkoma, Sasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2657
container_issue 11
container_start_page 2644
container_title IEEE transactions on knowledge and data engineering
container_volume 25
creator Weixiong Rao
Lei Chen
Tarkoma, Sasu
description In recent years, the content-based publish/subscribe [12], [22] has become a popular paradigm to decouple information producers and consumers with the help of brokers. Unfortunately, when users register their personal interests to the brokers, the privacy pertaining to filters defined by honest subscribers could be easily exposed by untrusted brokers, and this situation is further aggravated by the collusion attack between untrusted brokers and compromised subscribers. To protect the filter privacy, we introduce an anonymizer engine to separate the roles of brokers into two parts, and adapt the k-anonymity and `-diversity models to the contentbased pub/sub. When the anonymization model is applied to protect the filter privacy, there is an inherent tradeoff between the anonymization level and the publication redundancy. By leveraging partial-order-based generalization of filters to track filters satisfying k-anonymity and ℓ-diversity, we design algorithms to minimize the publication redundancy. Our experiments show the proposed scheme, when compared with studied counterparts, has smaller forwarding cost while achieving comparable attack resilience.
doi_str_mv 10.1109/TKDE.2012.177
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6297409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6297409</ieee_id><sourcerecordid>10_1109_TKDE_2012_177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-9f93e14450a96ccd88c5cc361b8f6ec5545e9871cb486e74163ac65f0c9619ec3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFaXrtzkD0w7N5nnssZWxYKF1nWY3NyBSB8ykyr596ZUXJ0D5-MsPsbuQUwAhJtu3p7mk1xAPgFjLtgIlLI8BweXQxcSuCykuWY3KX0KIayxMGLl5vDjY5PNQ2ixpX2XLdptRzFbxfbbY89nw0xZedh3w8gffaImWx3r6fpYZ-s-dbRLt-wq-G2iu78cs4_FfFO-8OX782s5W3LMlem4C64gkFIJ7zRiYy0qxEJDbYMmVEoqctYA1tJqMhJ04VGrINBpcITFmPHzL8ZDSpFC9RXbnY99BaI6GahOBqqTgWowMPAPZ74lon9W585I4YpfqA9WiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Efficient Filter Privacy-Aware Content-Based Pub/Sub Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Weixiong Rao ; Lei Chen ; Tarkoma, Sasu</creator><creatorcontrib>Weixiong Rao ; Lei Chen ; Tarkoma, Sasu</creatorcontrib><description>In recent years, the content-based publish/subscribe [12], [22] has become a popular paradigm to decouple information producers and consumers with the help of brokers. Unfortunately, when users register their personal interests to the brokers, the privacy pertaining to filters defined by honest subscribers could be easily exposed by untrusted brokers, and this situation is further aggravated by the collusion attack between untrusted brokers and compromised subscribers. To protect the filter privacy, we introduce an anonymizer engine to separate the roles of brokers into two parts, and adapt the k-anonymity and `-diversity models to the contentbased pub/sub. When the anonymization model is applied to protect the filter privacy, there is an inherent tradeoff between the anonymization level and the publication redundancy. By leveraging partial-order-based generalization of filters to track filters satisfying k-anonymity and ℓ-diversity, we design algorithms to minimize the publication redundancy. Our experiments show the proposed scheme, when compared with studied counterparts, has smaller forwarding cost while achieving comparable attack resilience.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2012.177</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Content-based pub/sub ; Cryptography ; Engines ; k-anonymity ; l-diversity ; Privacy ; Redundancy ; Registers ; Subscriptions</subject><ispartof>IEEE transactions on knowledge and data engineering, 2013-11, Vol.25 (11), p.2644-2657</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-9f93e14450a96ccd88c5cc361b8f6ec5545e9871cb486e74163ac65f0c9619ec3</citedby><cites>FETCH-LOGICAL-c257t-9f93e14450a96ccd88c5cc361b8f6ec5545e9871cb486e74163ac65f0c9619ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6297409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6297409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weixiong Rao</creatorcontrib><creatorcontrib>Lei Chen</creatorcontrib><creatorcontrib>Tarkoma, Sasu</creatorcontrib><title>Toward Efficient Filter Privacy-Aware Content-Based Pub/Sub Systems</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>In recent years, the content-based publish/subscribe [12], [22] has become a popular paradigm to decouple information producers and consumers with the help of brokers. Unfortunately, when users register their personal interests to the brokers, the privacy pertaining to filters defined by honest subscribers could be easily exposed by untrusted brokers, and this situation is further aggravated by the collusion attack between untrusted brokers and compromised subscribers. To protect the filter privacy, we introduce an anonymizer engine to separate the roles of brokers into two parts, and adapt the k-anonymity and `-diversity models to the contentbased pub/sub. When the anonymization model is applied to protect the filter privacy, there is an inherent tradeoff between the anonymization level and the publication redundancy. By leveraging partial-order-based generalization of filters to track filters satisfying k-anonymity and ℓ-diversity, we design algorithms to minimize the publication redundancy. Our experiments show the proposed scheme, when compared with studied counterparts, has smaller forwarding cost while achieving comparable attack resilience.</description><subject>Adaptation models</subject><subject>Content-based pub/sub</subject><subject>Cryptography</subject><subject>Engines</subject><subject>k-anonymity</subject><subject>l-diversity</subject><subject>Privacy</subject><subject>Redundancy</subject><subject>Registers</subject><subject>Subscriptions</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFaXrtzkD0w7N5nnssZWxYKF1nWY3NyBSB8ykyr596ZUXJ0D5-MsPsbuQUwAhJtu3p7mk1xAPgFjLtgIlLI8BweXQxcSuCykuWY3KX0KIayxMGLl5vDjY5PNQ2ixpX2XLdptRzFbxfbbY89nw0xZedh3w8gffaImWx3r6fpYZ-s-dbRLt-wq-G2iu78cs4_FfFO-8OX782s5W3LMlem4C64gkFIJ7zRiYy0qxEJDbYMmVEoqctYA1tJqMhJ04VGrINBpcITFmPHzL8ZDSpFC9RXbnY99BaI6GahOBqqTgWowMPAPZ74lon9W585I4YpfqA9WiQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Weixiong Rao</creator><creator>Lei Chen</creator><creator>Tarkoma, Sasu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131101</creationdate><title>Toward Efficient Filter Privacy-Aware Content-Based Pub/Sub Systems</title><author>Weixiong Rao ; Lei Chen ; Tarkoma, Sasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-9f93e14450a96ccd88c5cc361b8f6ec5545e9871cb486e74163ac65f0c9619ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Content-based pub/sub</topic><topic>Cryptography</topic><topic>Engines</topic><topic>k-anonymity</topic><topic>l-diversity</topic><topic>Privacy</topic><topic>Redundancy</topic><topic>Registers</topic><topic>Subscriptions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weixiong Rao</creatorcontrib><creatorcontrib>Lei Chen</creatorcontrib><creatorcontrib>Tarkoma, Sasu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weixiong Rao</au><au>Lei Chen</au><au>Tarkoma, Sasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Efficient Filter Privacy-Aware Content-Based Pub/Sub Systems</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>25</volume><issue>11</issue><spage>2644</spage><epage>2657</epage><pages>2644-2657</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>In recent years, the content-based publish/subscribe [12], [22] has become a popular paradigm to decouple information producers and consumers with the help of brokers. Unfortunately, when users register their personal interests to the brokers, the privacy pertaining to filters defined by honest subscribers could be easily exposed by untrusted brokers, and this situation is further aggravated by the collusion attack between untrusted brokers and compromised subscribers. To protect the filter privacy, we introduce an anonymizer engine to separate the roles of brokers into two parts, and adapt the k-anonymity and `-diversity models to the contentbased pub/sub. When the anonymization model is applied to protect the filter privacy, there is an inherent tradeoff between the anonymization level and the publication redundancy. By leveraging partial-order-based generalization of filters to track filters satisfying k-anonymity and ℓ-diversity, we design algorithms to minimize the publication redundancy. Our experiments show the proposed scheme, when compared with studied counterparts, has smaller forwarding cost while achieving comparable attack resilience.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2012.177</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2013-11, Vol.25 (11), p.2644-2657
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_6297409
source IEEE Electronic Library (IEL)
subjects Adaptation models
Content-based pub/sub
Cryptography
Engines
k-anonymity
l-diversity
Privacy
Redundancy
Registers
Subscriptions
title Toward Efficient Filter Privacy-Aware Content-Based Pub/Sub Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Efficient%20Filter%20Privacy-Aware%20Content-Based%20Pub/Sub%20Systems&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Weixiong%20Rao&rft.date=2013-11-01&rft.volume=25&rft.issue=11&rft.spage=2644&rft.epage=2657&rft.pages=2644-2657&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2012.177&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2012_177%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6297409&rfr_iscdi=true