Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain

Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fazal-e-Malik, Baharudin, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue
container_start_page 425
container_title
container_volume 1
creator Fazal-e-Malik
Baharudin, B.
description Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.
doi_str_mv 10.1109/ICCISci.2012.6297283
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6297283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6297283</ieee_id><sourcerecordid>6297283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c702756a9182ca34754ca7b7334907aae920745e2ed444752f8314325ddff1d13</originalsourceid><addsrcrecordid>eNpFUM1Kw0AYXBFBrX0CPewLJO5fsllvEqsGCh7MvXzNftuuNBvNbov69EYsOJdhmGFghpAbznLOmblt6rp57XwuGBd5KYwWlTwhl1yVWnIjy-r0X-jynMxjfGMTdMVZJS5IWDiHXfIHpN0QEoaUrSGipb6HDdIR0-jxALs7Wg_92gdIfgh0cPRjDyH57ym59TENmxF6mvAz7UekDuGXI_WBpi3Sh7qldujBhyty5mAXcX7kGWkfF239nC1fnpr6fpl5w1LWaSZ0UYLhlehAKl2oDvRaS6kM0wBoBNOqQIFWqckVrpJcSVFY6xy3XM7I9V-tR8TV-ziNGb9Wx3vkD0jLWvc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fazal-e-Malik ; Baharudin, B.</creator><creatorcontrib>Fazal-e-Malik ; Baharudin, B.</creatorcontrib><description>Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.</description><identifier>ISBN: 1467319376</identifier><identifier>ISBN: 9781467319379</identifier><identifier>EISBN: 1467319368</identifier><identifier>EISBN: 9781467319386</identifier><identifier>EISBN: 1467319384</identifier><identifier>EISBN: 9781467319362</identifier><identifier>DOI: 10.1109/ICCISci.2012.6297283</identifier><language>eng</language><publisher>IEEE</publisher><subject>block transformation ; content-based image retrieval (CBIR) ; DCT ; Entropy ; Feature extraction ; Histograms ; quantized histogram ; statistical texture features</subject><ispartof>2012 International Conference on Computer &amp; Information Science (ICCIS), 2012, Vol.1, p.425-430</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6297283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6297283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fazal-e-Malik</creatorcontrib><creatorcontrib>Baharudin, B.</creatorcontrib><title>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</title><title>2012 International Conference on Computer &amp; Information Science (ICCIS)</title><addtitle>ICCISci</addtitle><description>Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.</description><subject>block transformation</subject><subject>content-based image retrieval (CBIR)</subject><subject>DCT</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>quantized histogram</subject><subject>statistical texture features</subject><isbn>1467319376</isbn><isbn>9781467319379</isbn><isbn>1467319368</isbn><isbn>9781467319386</isbn><isbn>1467319384</isbn><isbn>9781467319362</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1Kw0AYXBFBrX0CPewLJO5fsllvEqsGCh7MvXzNftuuNBvNbov69EYsOJdhmGFghpAbznLOmblt6rp57XwuGBd5KYwWlTwhl1yVWnIjy-r0X-jynMxjfGMTdMVZJS5IWDiHXfIHpN0QEoaUrSGipb6HDdIR0-jxALs7Wg_92gdIfgh0cPRjDyH57ym59TENmxF6mvAz7UekDuGXI_WBpi3Sh7qldujBhyty5mAXcX7kGWkfF239nC1fnpr6fpl5w1LWaSZ0UYLhlehAKl2oDvRaS6kM0wBoBNOqQIFWqckVrpJcSVFY6xy3XM7I9V-tR8TV-ziNGb9Wx3vkD0jLWvc</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Fazal-e-Malik</creator><creator>Baharudin, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</title><author>Fazal-e-Malik ; Baharudin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c702756a9182ca34754ca7b7334907aae920745e2ed444752f8314325ddff1d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>block transformation</topic><topic>content-based image retrieval (CBIR)</topic><topic>DCT</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>quantized histogram</topic><topic>statistical texture features</topic><toplevel>online_resources</toplevel><creatorcontrib>Fazal-e-Malik</creatorcontrib><creatorcontrib>Baharudin, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fazal-e-Malik</au><au>Baharudin, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</atitle><btitle>2012 International Conference on Computer &amp; Information Science (ICCIS)</btitle><stitle>ICCISci</stitle><date>2012-06</date><risdate>2012</risdate><volume>1</volume><spage>425</spage><epage>430</epage><pages>425-430</pages><isbn>1467319376</isbn><isbn>9781467319379</isbn><eisbn>1467319368</eisbn><eisbn>9781467319386</eisbn><eisbn>1467319384</eisbn><eisbn>9781467319362</eisbn><abstract>Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.</abstract><pub>IEEE</pub><doi>10.1109/ICCISci.2012.6297283</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467319376
ispartof 2012 International Conference on Computer & Information Science (ICCIS), 2012, Vol.1, p.425-430
issn
language eng
recordid cdi_ieee_primary_6297283
source IEEE Electronic Library (IEL) Conference Proceedings
subjects block transformation
content-based image retrieval (CBIR)
DCT
Entropy
Feature extraction
Histograms
quantized histogram
statistical texture features
title Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effective%20content-based%20image%20retrieval:%20Combination%20of%20quantized%20histogram%20texture%20features%20in%20the%20DCT%20domain&rft.btitle=2012%20International%20Conference%20on%20Computer%20&%20Information%20Science%20(ICCIS)&rft.au=Fazal-e-Malik&rft.date=2012-06&rft.volume=1&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.isbn=1467319376&rft.isbn_list=9781467319379&rft_id=info:doi/10.1109/ICCISci.2012.6297283&rft_dat=%3Cieee_6IE%3E6297283%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467319368&rft.eisbn_list=9781467319386&rft.eisbn_list=1467319384&rft.eisbn_list=9781467319362&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6297283&rfr_iscdi=true