Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain
Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | |
container_start_page | 425 |
container_title | |
container_volume | 1 |
creator | Fazal-e-Malik Baharudin, B. |
description | Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination. |
doi_str_mv | 10.1109/ICCISci.2012.6297283 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6297283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6297283</ieee_id><sourcerecordid>6297283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c702756a9182ca34754ca7b7334907aae920745e2ed444752f8314325ddff1d13</originalsourceid><addsrcrecordid>eNpFUM1Kw0AYXBFBrX0CPewLJO5fsllvEqsGCh7MvXzNftuuNBvNbov69EYsOJdhmGFghpAbznLOmblt6rp57XwuGBd5KYwWlTwhl1yVWnIjy-r0X-jynMxjfGMTdMVZJS5IWDiHXfIHpN0QEoaUrSGipb6HDdIR0-jxALs7Wg_92gdIfgh0cPRjDyH57ym59TENmxF6mvAz7UekDuGXI_WBpi3Sh7qldujBhyty5mAXcX7kGWkfF239nC1fnpr6fpl5w1LWaSZ0UYLhlehAKl2oDvRaS6kM0wBoBNOqQIFWqckVrpJcSVFY6xy3XM7I9V-tR8TV-ziNGb9Wx3vkD0jLWvc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fazal-e-Malik ; Baharudin, B.</creator><creatorcontrib>Fazal-e-Malik ; Baharudin, B.</creatorcontrib><description>Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.</description><identifier>ISBN: 1467319376</identifier><identifier>ISBN: 9781467319379</identifier><identifier>EISBN: 1467319368</identifier><identifier>EISBN: 9781467319386</identifier><identifier>EISBN: 1467319384</identifier><identifier>EISBN: 9781467319362</identifier><identifier>DOI: 10.1109/ICCISci.2012.6297283</identifier><language>eng</language><publisher>IEEE</publisher><subject>block transformation ; content-based image retrieval (CBIR) ; DCT ; Entropy ; Feature extraction ; Histograms ; quantized histogram ; statistical texture features</subject><ispartof>2012 International Conference on Computer & Information Science (ICCIS), 2012, Vol.1, p.425-430</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6297283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6297283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fazal-e-Malik</creatorcontrib><creatorcontrib>Baharudin, B.</creatorcontrib><title>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</title><title>2012 International Conference on Computer & Information Science (ICCIS)</title><addtitle>ICCISci</addtitle><description>Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.</description><subject>block transformation</subject><subject>content-based image retrieval (CBIR)</subject><subject>DCT</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>quantized histogram</subject><subject>statistical texture features</subject><isbn>1467319376</isbn><isbn>9781467319379</isbn><isbn>1467319368</isbn><isbn>9781467319386</isbn><isbn>1467319384</isbn><isbn>9781467319362</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1Kw0AYXBFBrX0CPewLJO5fsllvEqsGCh7MvXzNftuuNBvNbov69EYsOJdhmGFghpAbznLOmblt6rp57XwuGBd5KYwWlTwhl1yVWnIjy-r0X-jynMxjfGMTdMVZJS5IWDiHXfIHpN0QEoaUrSGipb6HDdIR0-jxALs7Wg_92gdIfgh0cPRjDyH57ym59TENmxF6mvAz7UekDuGXI_WBpi3Sh7qldujBhyty5mAXcX7kGWkfF239nC1fnpr6fpl5w1LWaSZ0UYLhlehAKl2oDvRaS6kM0wBoBNOqQIFWqckVrpJcSVFY6xy3XM7I9V-tR8TV-ziNGb9Wx3vkD0jLWvc</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Fazal-e-Malik</creator><creator>Baharudin, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</title><author>Fazal-e-Malik ; Baharudin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c702756a9182ca34754ca7b7334907aae920745e2ed444752f8314325ddff1d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>block transformation</topic><topic>content-based image retrieval (CBIR)</topic><topic>DCT</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>quantized histogram</topic><topic>statistical texture features</topic><toplevel>online_resources</toplevel><creatorcontrib>Fazal-e-Malik</creatorcontrib><creatorcontrib>Baharudin, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fazal-e-Malik</au><au>Baharudin, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain</atitle><btitle>2012 International Conference on Computer & Information Science (ICCIS)</btitle><stitle>ICCISci</stitle><date>2012-06</date><risdate>2012</risdate><volume>1</volume><spage>425</spage><epage>430</epage><pages>425-430</pages><isbn>1467319376</isbn><isbn>9781467319379</isbn><eisbn>1467319368</eisbn><eisbn>9781467319386</eisbn><eisbn>1467319384</eisbn><eisbn>9781467319362</eisbn><abstract>Effective Content-Based Image Retrieval (CBIR) is based on efficient low level features extraction for indexing and on effective query image matching with indexed images for retrieval of similar images. Feature extraction in compressed domain is an attractive area because at present almost all the images are represented in the compressed form using the DCT (Discrete Cosine Transformation) blocks transformation. Some critical information is removed in compression and only perceptual information is left which has significant attraction for information retrieval in the compressed domain. In this paper the statistical texture features are extracted from the quantized histograms in the DCT domain using only the DC and first three AC coefficients of the DCT blocks of image having more significant information. We study the effect of combination of texture features in effective image retrieval. We perform experimental comparison of combination of various statistical texture features to get the optimum combination of features for the effective image retrieval in terms of precision. Experiments on the Corel database using the proposed approach, give results which show that the combination of various features of quantized histograms give good performance in retrieval as compared to use single or less number of texture features combination.</abstract><pub>IEEE</pub><doi>10.1109/ICCISci.2012.6297283</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467319376 |
ispartof | 2012 International Conference on Computer & Information Science (ICCIS), 2012, Vol.1, p.425-430 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6297283 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | block transformation content-based image retrieval (CBIR) DCT Entropy Feature extraction Histograms quantized histogram statistical texture features |
title | Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effective%20content-based%20image%20retrieval:%20Combination%20of%20quantized%20histogram%20texture%20features%20in%20the%20DCT%20domain&rft.btitle=2012%20International%20Conference%20on%20Computer%20&%20Information%20Science%20(ICCIS)&rft.au=Fazal-e-Malik&rft.date=2012-06&rft.volume=1&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.isbn=1467319376&rft.isbn_list=9781467319379&rft_id=info:doi/10.1109/ICCISci.2012.6297283&rft_dat=%3Cieee_6IE%3E6297283%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467319368&rft.eisbn_list=9781467319386&rft.eisbn_list=1467319384&rft.eisbn_list=9781467319362&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6297283&rfr_iscdi=true |