Visualizing community centric network layouts

We present our COMmunity Boundary (COMB) and COMmunity Circles (COMC) network layout algorithms that focus on revealing the structure of discovered communities and the relationships between these communities. We believe this information is vital when developing new community mining algorithms as it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fagnan, J., Zaiane, O., Goebel, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue
container_start_page 321
container_title
container_volume
creator Fagnan, J.
Zaiane, O.
Goebel, R.
description We present our COMmunity Boundary (COMB) and COMmunity Circles (COMC) network layout algorithms that focus on revealing the structure of discovered communities and the relationships between these communities. We believe this information is vital when developing new community mining algorithms as it allows the viewer to more quickly assess the quality of a mining result without appealing to large tables of statistics. To implement our algorithms we have introduced numerous modifications to the existing Fruchterman-Reingold layout, including support for multi-sized vertices, removal of the bounding frame, introduction of circular bounding boxes, and a novel slotting system. Our evaluation argues that both COMB and COMC outperform existing alternatives in their ability to reveal community structure and emphasize inter-community relations.
doi_str_mv 10.1109/IV.2012.61
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6295833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6295833</ieee_id><sourcerecordid>6295833</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1261-f865a9e488b4ef6692ffcef61f37506016cfb807a269b943743984fb3c57fd513</originalsourceid><addsrcrecordid>eNotjklLBDEUhOMGNmNfvHrpP5A2L8tLcpRBx4EBLzNzHdIxkWgv0gvS_nobtS5VUEXxEXILrARg9n57LDkDXiKckdxqwzRaJbUGc04yLrSiDIS5-O1AohacI9OXJAOlGEUm9DXJh-GdLVoWoDEj9JiGydXpO7Vvhe-aZmrTOBc-tGOffNGG8avrP4razd00DjfkKrp6CPm_r8jh6XG_fqa7l812_bCjCTgCjQaVs0EaU8kQES2P0S8B4gLJkAH6WC34jqOtrBRaCmtkrIRXOr4qECty9_ebQginzz41rp9PyK0yQogf6eNGiA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visualizing community centric network layouts</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fagnan, J. ; Zaiane, O. ; Goebel, R.</creator><creatorcontrib>Fagnan, J. ; Zaiane, O. ; Goebel, R.</creatorcontrib><description>We present our COMmunity Boundary (COMB) and COMmunity Circles (COMC) network layout algorithms that focus on revealing the structure of discovered communities and the relationships between these communities. We believe this information is vital when developing new community mining algorithms as it allows the viewer to more quickly assess the quality of a mining result without appealing to large tables of statistics. To implement our algorithms we have introduced numerous modifications to the existing Fruchterman-Reingold layout, including support for multi-sized vertices, removal of the bounding frame, introduction of circular bounding boxes, and a novel slotting system. Our evaluation argues that both COMB and COMC outperform existing alternatives in their ability to reveal community structure and emphasize inter-community relations.</description><identifier>ISSN: 1550-6037</identifier><identifier>ISBN: 9781467322607</identifier><identifier>ISBN: 1467322601</identifier><identifier>EISSN: 2375-0138</identifier><identifier>EISBN: 9780769547718</identifier><identifier>EISBN: 0769547710</identifier><identifier>DOI: 10.1109/IV.2012.61</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communities ; Feeds ; Force ; Inference algorithms ; Layout ; Proteins ; Visualization</subject><ispartof>2012 16th International Conference on Information Visualisation, 2012, p.321-330</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6295833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6295833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fagnan, J.</creatorcontrib><creatorcontrib>Zaiane, O.</creatorcontrib><creatorcontrib>Goebel, R.</creatorcontrib><title>Visualizing community centric network layouts</title><title>2012 16th International Conference on Information Visualisation</title><addtitle>iv</addtitle><description>We present our COMmunity Boundary (COMB) and COMmunity Circles (COMC) network layout algorithms that focus on revealing the structure of discovered communities and the relationships between these communities. We believe this information is vital when developing new community mining algorithms as it allows the viewer to more quickly assess the quality of a mining result without appealing to large tables of statistics. To implement our algorithms we have introduced numerous modifications to the existing Fruchterman-Reingold layout, including support for multi-sized vertices, removal of the bounding frame, introduction of circular bounding boxes, and a novel slotting system. Our evaluation argues that both COMB and COMC outperform existing alternatives in their ability to reveal community structure and emphasize inter-community relations.</description><subject>Communities</subject><subject>Feeds</subject><subject>Force</subject><subject>Inference algorithms</subject><subject>Layout</subject><subject>Proteins</subject><subject>Visualization</subject><issn>1550-6037</issn><issn>2375-0138</issn><isbn>9781467322607</isbn><isbn>1467322601</isbn><isbn>9780769547718</isbn><isbn>0769547710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjklLBDEUhOMGNmNfvHrpP5A2L8tLcpRBx4EBLzNzHdIxkWgv0gvS_nobtS5VUEXxEXILrARg9n57LDkDXiKckdxqwzRaJbUGc04yLrSiDIS5-O1AohacI9OXJAOlGEUm9DXJh-GdLVoWoDEj9JiGydXpO7Vvhe-aZmrTOBc-tGOffNGG8avrP4razd00DjfkKrp6CPm_r8jh6XG_fqa7l812_bCjCTgCjQaVs0EaU8kQES2P0S8B4gLJkAH6WC34jqOtrBRaCmtkrIRXOr4qECty9_ebQginzz41rp9PyK0yQogf6eNGiA</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Fagnan, J.</creator><creator>Zaiane, O.</creator><creator>Goebel, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Visualizing community centric network layouts</title><author>Fagnan, J. ; Zaiane, O. ; Goebel, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1261-f865a9e488b4ef6692ffcef61f37506016cfb807a269b943743984fb3c57fd513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Communities</topic><topic>Feeds</topic><topic>Force</topic><topic>Inference algorithms</topic><topic>Layout</topic><topic>Proteins</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fagnan, J.</creatorcontrib><creatorcontrib>Zaiane, O.</creatorcontrib><creatorcontrib>Goebel, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fagnan, J.</au><au>Zaiane, O.</au><au>Goebel, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visualizing community centric network layouts</atitle><btitle>2012 16th International Conference on Information Visualisation</btitle><stitle>iv</stitle><date>2012-07</date><risdate>2012</risdate><spage>321</spage><epage>330</epage><pages>321-330</pages><issn>1550-6037</issn><eissn>2375-0138</eissn><isbn>9781467322607</isbn><isbn>1467322601</isbn><eisbn>9780769547718</eisbn><eisbn>0769547710</eisbn><coden>IEEPAD</coden><abstract>We present our COMmunity Boundary (COMB) and COMmunity Circles (COMC) network layout algorithms that focus on revealing the structure of discovered communities and the relationships between these communities. We believe this information is vital when developing new community mining algorithms as it allows the viewer to more quickly assess the quality of a mining result without appealing to large tables of statistics. To implement our algorithms we have introduced numerous modifications to the existing Fruchterman-Reingold layout, including support for multi-sized vertices, removal of the bounding frame, introduction of circular bounding boxes, and a novel slotting system. Our evaluation argues that both COMB and COMC outperform existing alternatives in their ability to reveal community structure and emphasize inter-community relations.</abstract><pub>IEEE</pub><doi>10.1109/IV.2012.61</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-6037
ispartof 2012 16th International Conference on Information Visualisation, 2012, p.321-330
issn 1550-6037
2375-0138
language eng
recordid cdi_ieee_primary_6295833
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communities
Feeds
Force
Inference algorithms
Layout
Proteins
Visualization
title Visualizing community centric network layouts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visualizing%20community%20centric%20network%20layouts&rft.btitle=2012%2016th%20International%20Conference%20on%20Information%20Visualisation&rft.au=Fagnan,%20J.&rft.date=2012-07&rft.spage=321&rft.epage=330&rft.pages=321-330&rft.issn=1550-6037&rft.eissn=2375-0138&rft.isbn=9781467322607&rft.isbn_list=1467322601&rft.coden=IEEPAD&rft_id=info:doi/10.1109/IV.2012.61&rft_dat=%3Cieee_6IE%3E6295833%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547718&rft.eisbn_list=0769547710&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6295833&rfr_iscdi=true