Confidence measure improvement using useful predictor features and support vector machines

In traditional keyword spotting (KWS) systems, confidence measure (CM) of each keyword is computed from normalized acoustic likelihoods. In addition to likelihood based scores, some keyword dependent features named predictor features such as duration and prosodic features could be defined to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shekofteh, Y., Kabudian, J., Goodarzi, M. M., Rezaei, I. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1171
container_issue
container_start_page 1168
container_title
container_volume
creator Shekofteh, Y.
Kabudian, J.
Goodarzi, M. M.
Rezaei, I. S.
description In traditional keyword spotting (KWS) systems, confidence measure (CM) of each keyword is computed from normalized acoustic likelihoods. In addition to likelihood based scores, some keyword dependent features named predictor features such as duration and prosodic features could be defined to improve the performance of CM. In this paper a discriminative and probabilistic computation of CM based upon some useful predictor features and support vector machines (SVM) is presented for Persian conversational telephone speech KWS. Our experimental results show that higher performance will be achieved by appending utilized predictor features. The proposed CM with linear kernel function of SVM is obtained an improvement about 8.6% in Figure-of-Merit (FOM) of KWS system.
doi_str_mv 10.1109/IranianCEE.2012.6292531
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6292531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6292531</ieee_id><sourcerecordid>6292531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-89e0f009e02764ede1f6cc6088784d837219dbee54bff46c281bb1658f4433263</originalsourceid><addsrcrecordid>eNo1kLFOwzAYhI0AiVL6BAz4BVL8245jjygqUKkSCywsleP8BqPGieykEm9PBGX5Tqc73XCE3AFbAzBzv002BhvrzWbNGfC14oaXAs7IylQapKoEgKz4Obn-N8ZckAUHJYuKlfKKrHL-YowJ0FqbckHe6z760GJ0SDu0eUpIQzek_ogdxpFOOcSPmeinAx0StsGNfaIe7ThXM7WxpXkahj6N9Ii_WWfdZ4iYb8ilt4eMq5Muydvj5rV-LnYvT9v6YVc4kHIstEHmGZvJKyWxRfDKOcW0rrRstag4mLZBLGXjvVSOa2gaUKX2UgrBlViS27_dgIj7IYXOpu_96RrxAy5bWRI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Confidence measure improvement using useful predictor features and support vector machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shekofteh, Y. ; Kabudian, J. ; Goodarzi, M. M. ; Rezaei, I. S.</creator><creatorcontrib>Shekofteh, Y. ; Kabudian, J. ; Goodarzi, M. M. ; Rezaei, I. S.</creatorcontrib><description>In traditional keyword spotting (KWS) systems, confidence measure (CM) of each keyword is computed from normalized acoustic likelihoods. In addition to likelihood based scores, some keyword dependent features named predictor features such as duration and prosodic features could be defined to improve the performance of CM. In this paper a discriminative and probabilistic computation of CM based upon some useful predictor features and support vector machines (SVM) is presented for Persian conversational telephone speech KWS. Our experimental results show that higher performance will be achieved by appending utilized predictor features. The proposed CM with linear kernel function of SVM is obtained an improvement about 8.6% in Figure-of-Merit (FOM) of KWS system.</description><identifier>ISSN: 2164-7054</identifier><identifier>ISBN: 1467311499</identifier><identifier>ISBN: 9781467311496</identifier><identifier>EISBN: 9781467311472</identifier><identifier>EISBN: 1467311480</identifier><identifier>EISBN: 9781467311489</identifier><identifier>EISBN: 1467311472</identifier><identifier>DOI: 10.1109/IranianCEE.2012.6292531</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; confidence measure ; Hidden Markov models ; Ions ; Kernel ; keyword spotting ; predictor feature ; speech recognition ; Support vector machines ; SVM</subject><ispartof>20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, p.1168-1171</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c144t-89e0f009e02764ede1f6cc6088784d837219dbee54bff46c281bb1658f4433263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6292531$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6292531$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shekofteh, Y.</creatorcontrib><creatorcontrib>Kabudian, J.</creatorcontrib><creatorcontrib>Goodarzi, M. M.</creatorcontrib><creatorcontrib>Rezaei, I. S.</creatorcontrib><title>Confidence measure improvement using useful predictor features and support vector machines</title><title>20th Iranian Conference on Electrical Engineering (ICEE2012)</title><addtitle>IranianCEE</addtitle><description>In traditional keyword spotting (KWS) systems, confidence measure (CM) of each keyword is computed from normalized acoustic likelihoods. In addition to likelihood based scores, some keyword dependent features named predictor features such as duration and prosodic features could be defined to improve the performance of CM. In this paper a discriminative and probabilistic computation of CM based upon some useful predictor features and support vector machines (SVM) is presented for Persian conversational telephone speech KWS. Our experimental results show that higher performance will be achieved by appending utilized predictor features. The proposed CM with linear kernel function of SVM is obtained an improvement about 8.6% in Figure-of-Merit (FOM) of KWS system.</description><subject>Acoustics</subject><subject>confidence measure</subject><subject>Hidden Markov models</subject><subject>Ions</subject><subject>Kernel</subject><subject>keyword spotting</subject><subject>predictor feature</subject><subject>speech recognition</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>2164-7054</issn><isbn>1467311499</isbn><isbn>9781467311496</isbn><isbn>9781467311472</isbn><isbn>1467311480</isbn><isbn>9781467311489</isbn><isbn>1467311472</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kLFOwzAYhI0AiVL6BAz4BVL8245jjygqUKkSCywsleP8BqPGieykEm9PBGX5Tqc73XCE3AFbAzBzv002BhvrzWbNGfC14oaXAs7IylQapKoEgKz4Obn-N8ZckAUHJYuKlfKKrHL-YowJ0FqbckHe6z760GJ0SDu0eUpIQzek_ogdxpFOOcSPmeinAx0StsGNfaIe7ThXM7WxpXkahj6N9Ii_WWfdZ4iYb8ilt4eMq5Muydvj5rV-LnYvT9v6YVc4kHIstEHmGZvJKyWxRfDKOcW0rrRstag4mLZBLGXjvVSOa2gaUKX2UgrBlViS27_dgIj7IYXOpu_96RrxAy5bWRI</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Shekofteh, Y.</creator><creator>Kabudian, J.</creator><creator>Goodarzi, M. M.</creator><creator>Rezaei, I. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Confidence measure improvement using useful predictor features and support vector machines</title><author>Shekofteh, Y. ; Kabudian, J. ; Goodarzi, M. M. ; Rezaei, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-89e0f009e02764ede1f6cc6088784d837219dbee54bff46c281bb1658f4433263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>confidence measure</topic><topic>Hidden Markov models</topic><topic>Ions</topic><topic>Kernel</topic><topic>keyword spotting</topic><topic>predictor feature</topic><topic>speech recognition</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Shekofteh, Y.</creatorcontrib><creatorcontrib>Kabudian, J.</creatorcontrib><creatorcontrib>Goodarzi, M. M.</creatorcontrib><creatorcontrib>Rezaei, I. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shekofteh, Y.</au><au>Kabudian, J.</au><au>Goodarzi, M. M.</au><au>Rezaei, I. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Confidence measure improvement using useful predictor features and support vector machines</atitle><btitle>20th Iranian Conference on Electrical Engineering (ICEE2012)</btitle><stitle>IranianCEE</stitle><date>2012-05</date><risdate>2012</risdate><spage>1168</spage><epage>1171</epage><pages>1168-1171</pages><issn>2164-7054</issn><isbn>1467311499</isbn><isbn>9781467311496</isbn><eisbn>9781467311472</eisbn><eisbn>1467311480</eisbn><eisbn>9781467311489</eisbn><eisbn>1467311472</eisbn><abstract>In traditional keyword spotting (KWS) systems, confidence measure (CM) of each keyword is computed from normalized acoustic likelihoods. In addition to likelihood based scores, some keyword dependent features named predictor features such as duration and prosodic features could be defined to improve the performance of CM. In this paper a discriminative and probabilistic computation of CM based upon some useful predictor features and support vector machines (SVM) is presented for Persian conversational telephone speech KWS. Our experimental results show that higher performance will be achieved by appending utilized predictor features. The proposed CM with linear kernel function of SVM is obtained an improvement about 8.6% in Figure-of-Merit (FOM) of KWS system.</abstract><pub>IEEE</pub><doi>10.1109/IranianCEE.2012.6292531</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7054
ispartof 20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, p.1168-1171
issn 2164-7054
language eng
recordid cdi_ieee_primary_6292531
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
confidence measure
Hidden Markov models
Ions
Kernel
keyword spotting
predictor feature
speech recognition
Support vector machines
SVM
title Confidence measure improvement using useful predictor features and support vector machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Confidence%20measure%20improvement%20using%20useful%20predictor%20features%20and%20support%20vector%20machines&rft.btitle=20th%20Iranian%20Conference%20on%20Electrical%20Engineering%20(ICEE2012)&rft.au=Shekofteh,%20Y.&rft.date=2012-05&rft.spage=1168&rft.epage=1171&rft.pages=1168-1171&rft.issn=2164-7054&rft.isbn=1467311499&rft.isbn_list=9781467311496&rft_id=info:doi/10.1109/IranianCEE.2012.6292531&rft_dat=%3Cieee_6IE%3E6292531%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311472&rft.eisbn_list=1467311480&rft.eisbn_list=9781467311489&rft.eisbn_list=1467311472&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6292531&rfr_iscdi=true