Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm

Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karimi, M., Naji, H. R., Golestani, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue
container_start_page 706
container_title
container_volume
creator Karimi, M.
Naji, H. R.
Golestani, S.
description Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.
doi_str_mv 10.1109/IranianCEE.2012.6292445
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6292445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6292445</ieee_id><sourcerecordid>6292445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-1b56b476e9a2635c39e4b92ce0ff09b46e1b5cf69299432590f2bf29cf3b70f73</originalsourceid><addsrcrecordid>eNpFkMtOAjEYhWvURESewIV9gcHepjP_khAEEiILNS5Jp_yF6kyHtEMMPL0YMa5OvpzL4hDywNmQcwaP82iCN2E8mQwF42KoBQil8gsygKLkSheSc1WIS3L7BwBXpCe4VlnBcnVDBil9MMYkL8sS8h6Jy13nG3_0YUNtvU8dxmyLZk0T1mg73wbqA3338YQp0RcMqY30GbuvNn4muk8_xSkG7Lylo3rTRt9tG2rCms5MbNpwOHVMtNt_845cO1MnHJy1T96eJq_jWbZYTufj0SKzXKku41WuK1VoBCO0zK0EVBUIi8w5BpXSeEpYp0EAKClyYE5UToB1siqYK2Sf3P_uekRc7aJvTDyszpfJb8TSYZI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karimi, M. ; Naji, H. R. ; Golestani, S.</creator><creatorcontrib>Karimi, M. ; Naji, H. R. ; Golestani, S.</creatorcontrib><description>Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.</description><identifier>ISSN: 2164-7054</identifier><identifier>ISBN: 1467311499</identifier><identifier>ISBN: 9781467311496</identifier><identifier>EISBN: 9781467311472</identifier><identifier>EISBN: 1467311480</identifier><identifier>EISBN: 9781467311489</identifier><identifier>EISBN: 1467311472</identifier><identifier>DOI: 10.1109/IranianCEE.2012.6292445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; clustering ; Clustering algorithms ; Computers ; Energy-efficient ; Genetic Algorithm ; Harmony Search algorithm ; Heating ; Leach ; Optical sensors ; Wireless communication ; Wireless sensor networks</subject><ispartof>20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, p.706-710</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c144t-1b56b476e9a2635c39e4b92ce0ff09b46e1b5cf69299432590f2bf29cf3b70f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6292445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6292445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karimi, M.</creatorcontrib><creatorcontrib>Naji, H. R.</creatorcontrib><creatorcontrib>Golestani, S.</creatorcontrib><title>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</title><title>20th Iranian Conference on Electrical Engineering (ICEE2012)</title><addtitle>IranianCEE</addtitle><description>Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.</description><subject>Ad hoc networks</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computers</subject><subject>Energy-efficient</subject><subject>Genetic Algorithm</subject><subject>Harmony Search algorithm</subject><subject>Heating</subject><subject>Leach</subject><subject>Optical sensors</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2164-7054</issn><isbn>1467311499</isbn><isbn>9781467311496</isbn><isbn>9781467311472</isbn><isbn>1467311480</isbn><isbn>9781467311489</isbn><isbn>1467311472</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOAjEYhWvURESewIV9gcHepjP_khAEEiILNS5Jp_yF6kyHtEMMPL0YMa5OvpzL4hDywNmQcwaP82iCN2E8mQwF42KoBQil8gsygKLkSheSc1WIS3L7BwBXpCe4VlnBcnVDBil9MMYkL8sS8h6Jy13nG3_0YUNtvU8dxmyLZk0T1mg73wbqA3338YQp0RcMqY30GbuvNn4muk8_xSkG7Lylo3rTRt9tG2rCms5MbNpwOHVMtNt_845cO1MnHJy1T96eJq_jWbZYTufj0SKzXKku41WuK1VoBCO0zK0EVBUIi8w5BpXSeEpYp0EAKClyYE5UToB1siqYK2Sf3P_uekRc7aJvTDyszpfJb8TSYZI</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Karimi, M.</creator><creator>Naji, H. R.</creator><creator>Golestani, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</title><author>Karimi, M. ; Naji, H. R. ; Golestani, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-1b56b476e9a2635c39e4b92ce0ff09b46e1b5cf69299432590f2bf29cf3b70f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ad hoc networks</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computers</topic><topic>Energy-efficient</topic><topic>Genetic Algorithm</topic><topic>Harmony Search algorithm</topic><topic>Heating</topic><topic>Leach</topic><topic>Optical sensors</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Karimi, M.</creatorcontrib><creatorcontrib>Naji, H. R.</creatorcontrib><creatorcontrib>Golestani, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karimi, M.</au><au>Naji, H. R.</au><au>Golestani, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</atitle><btitle>20th Iranian Conference on Electrical Engineering (ICEE2012)</btitle><stitle>IranianCEE</stitle><date>2012-05</date><risdate>2012</risdate><spage>706</spage><epage>710</epage><pages>706-710</pages><issn>2164-7054</issn><isbn>1467311499</isbn><isbn>9781467311496</isbn><eisbn>9781467311472</eisbn><eisbn>1467311480</eisbn><eisbn>9781467311489</eisbn><eisbn>1467311472</eisbn><abstract>Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.</abstract><pub>IEEE</pub><doi>10.1109/IranianCEE.2012.6292445</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7054
ispartof 20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, p.706-710
issn 2164-7054
language eng
recordid cdi_ieee_primary_6292445
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ad hoc networks
clustering
Clustering algorithms
Computers
Energy-efficient
Genetic Algorithm
Harmony Search algorithm
Heating
Leach
Optical sensors
Wireless communication
Wireless sensor networks
title Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimizing%20cluster-head%20selection%20in%20Wireless%20Sensor%20Networks%20using%20Genetic%20Algorithm%20and%20Harmony%20Search%20Algorithm&rft.btitle=20th%20Iranian%20Conference%20on%20Electrical%20Engineering%20(ICEE2012)&rft.au=Karimi,%20M.&rft.date=2012-05&rft.spage=706&rft.epage=710&rft.pages=706-710&rft.issn=2164-7054&rft.isbn=1467311499&rft.isbn_list=9781467311496&rft_id=info:doi/10.1109/IranianCEE.2012.6292445&rft_dat=%3Cieee_6IE%3E6292445%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311472&rft.eisbn_list=1467311480&rft.eisbn_list=9781467311489&rft.eisbn_list=1467311472&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6292445&rfr_iscdi=true