Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm
Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known c...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 710 |
---|---|
container_issue | |
container_start_page | 706 |
container_title | |
container_volume | |
creator | Karimi, M. Naji, H. R. Golestani, S. |
description | Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network. |
doi_str_mv | 10.1109/IranianCEE.2012.6292445 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6292445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6292445</ieee_id><sourcerecordid>6292445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-1b56b476e9a2635c39e4b92ce0ff09b46e1b5cf69299432590f2bf29cf3b70f73</originalsourceid><addsrcrecordid>eNpFkMtOAjEYhWvURESewIV9gcHepjP_khAEEiILNS5Jp_yF6kyHtEMMPL0YMa5OvpzL4hDywNmQcwaP82iCN2E8mQwF42KoBQil8gsygKLkSheSc1WIS3L7BwBXpCe4VlnBcnVDBil9MMYkL8sS8h6Jy13nG3_0YUNtvU8dxmyLZk0T1mg73wbqA3338YQp0RcMqY30GbuvNn4muk8_xSkG7Lylo3rTRt9tG2rCms5MbNpwOHVMtNt_845cO1MnHJy1T96eJq_jWbZYTufj0SKzXKku41WuK1VoBCO0zK0EVBUIi8w5BpXSeEpYp0EAKClyYE5UToB1siqYK2Sf3P_uekRc7aJvTDyszpfJb8TSYZI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karimi, M. ; Naji, H. R. ; Golestani, S.</creator><creatorcontrib>Karimi, M. ; Naji, H. R. ; Golestani, S.</creatorcontrib><description>Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.</description><identifier>ISSN: 2164-7054</identifier><identifier>ISBN: 1467311499</identifier><identifier>ISBN: 9781467311496</identifier><identifier>EISBN: 9781467311472</identifier><identifier>EISBN: 1467311480</identifier><identifier>EISBN: 9781467311489</identifier><identifier>EISBN: 1467311472</identifier><identifier>DOI: 10.1109/IranianCEE.2012.6292445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; clustering ; Clustering algorithms ; Computers ; Energy-efficient ; Genetic Algorithm ; Harmony Search algorithm ; Heating ; Leach ; Optical sensors ; Wireless communication ; Wireless sensor networks</subject><ispartof>20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, p.706-710</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c144t-1b56b476e9a2635c39e4b92ce0ff09b46e1b5cf69299432590f2bf29cf3b70f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6292445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6292445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karimi, M.</creatorcontrib><creatorcontrib>Naji, H. R.</creatorcontrib><creatorcontrib>Golestani, S.</creatorcontrib><title>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</title><title>20th Iranian Conference on Electrical Engineering (ICEE2012)</title><addtitle>IranianCEE</addtitle><description>Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.</description><subject>Ad hoc networks</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computers</subject><subject>Energy-efficient</subject><subject>Genetic Algorithm</subject><subject>Harmony Search algorithm</subject><subject>Heating</subject><subject>Leach</subject><subject>Optical sensors</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2164-7054</issn><isbn>1467311499</isbn><isbn>9781467311496</isbn><isbn>9781467311472</isbn><isbn>1467311480</isbn><isbn>9781467311489</isbn><isbn>1467311472</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOAjEYhWvURESewIV9gcHepjP_khAEEiILNS5Jp_yF6kyHtEMMPL0YMa5OvpzL4hDywNmQcwaP82iCN2E8mQwF42KoBQil8gsygKLkSheSc1WIS3L7BwBXpCe4VlnBcnVDBil9MMYkL8sS8h6Jy13nG3_0YUNtvU8dxmyLZk0T1mg73wbqA3338YQp0RcMqY30GbuvNn4muk8_xSkG7Lylo3rTRt9tG2rCms5MbNpwOHVMtNt_845cO1MnHJy1T96eJq_jWbZYTufj0SKzXKku41WuK1VoBCO0zK0EVBUIi8w5BpXSeEpYp0EAKClyYE5UToB1siqYK2Sf3P_uekRc7aJvTDyszpfJb8TSYZI</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Karimi, M.</creator><creator>Naji, H. R.</creator><creator>Golestani, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</title><author>Karimi, M. ; Naji, H. R. ; Golestani, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-1b56b476e9a2635c39e4b92ce0ff09b46e1b5cf69299432590f2bf29cf3b70f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ad hoc networks</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computers</topic><topic>Energy-efficient</topic><topic>Genetic Algorithm</topic><topic>Harmony Search algorithm</topic><topic>Heating</topic><topic>Leach</topic><topic>Optical sensors</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Karimi, M.</creatorcontrib><creatorcontrib>Naji, H. R.</creatorcontrib><creatorcontrib>Golestani, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karimi, M.</au><au>Naji, H. R.</au><au>Golestani, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm</atitle><btitle>20th Iranian Conference on Electrical Engineering (ICEE2012)</btitle><stitle>IranianCEE</stitle><date>2012-05</date><risdate>2012</risdate><spage>706</spage><epage>710</epage><pages>706-710</pages><issn>2164-7054</issn><isbn>1467311499</isbn><isbn>9781467311496</isbn><eisbn>9781467311472</eisbn><eisbn>1467311480</eisbn><eisbn>9781467311489</eisbn><eisbn>1467311472</eisbn><abstract>Being an important factor in designing Wireless Sensor Networks, network lifetime depends on the energy of the sensor nodes which is limited by the battery of the node. Clustering is considered to be an energy management strategy in wireless sensor networks, and Leach is one of the most well-known clustering mechanisms. Random cluster selection in this method has lead to its inefficiency. In this paper we proposed two algorithms, GP-Leach and HS-Leach. We improved the energy consumption by partitioning the network and using the evolutionary algorithms for optimized cluster head selection considering WSN nodes' position information and residual energy. The simulation results performed in MATLAB shows that our proposed algorithms are more efficient and they increased the lifetime of the network.</abstract><pub>IEEE</pub><doi>10.1109/IranianCEE.2012.6292445</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-7054 |
ispartof | 20th Iranian Conference on Electrical Engineering (ICEE2012), 2012, p.706-710 |
issn | 2164-7054 |
language | eng |
recordid | cdi_ieee_primary_6292445 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ad hoc networks clustering Clustering algorithms Computers Energy-efficient Genetic Algorithm Harmony Search algorithm Heating Leach Optical sensors Wireless communication Wireless sensor networks |
title | Optimizing cluster-head selection in Wireless Sensor Networks using Genetic Algorithm and Harmony Search Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimizing%20cluster-head%20selection%20in%20Wireless%20Sensor%20Networks%20using%20Genetic%20Algorithm%20and%20Harmony%20Search%20Algorithm&rft.btitle=20th%20Iranian%20Conference%20on%20Electrical%20Engineering%20(ICEE2012)&rft.au=Karimi,%20M.&rft.date=2012-05&rft.spage=706&rft.epage=710&rft.pages=706-710&rft.issn=2164-7054&rft.isbn=1467311499&rft.isbn_list=9781467311496&rft_id=info:doi/10.1109/IranianCEE.2012.6292445&rft_dat=%3Cieee_6IE%3E6292445%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311472&rft.eisbn_list=1467311480&rft.eisbn_list=9781467311489&rft.eisbn_list=1467311472&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6292445&rfr_iscdi=true |