3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI
The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of like...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2013-04, Vol.35 (4), p.983-995 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 995 |
---|---|
container_issue | 4 |
container_start_page | 983 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 35 |
creator | MomayyezSiahkal, P. Siddiqi, K. |
description | The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain. |
doi_str_mv | 10.1109/TPAMI.2012.184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6291720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6291720</ieee_id><sourcerecordid>1312173460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</originalsourceid><addsrcrecordid>eNpFkDFPwzAQRi0EoqWwsiChLEgsKT6fkzhj1VKo1AoEZY5cxwajNAlxgtR_j0tLmW649326e4RcAh0C0PRu-TxazIaMAhuC4EekDymmIUaYHpM-hZiFQjDRI2fOfVIKPKJ4SnoMORMceZ_McBK8tpX6kK61KhhX67rQra3KYGp1kbvAVE2wkHVty3e_LUutWvtt201gy2BijencFl68zM7JiZGF0xf7OSBv0_vl-DGcPz3MxqN5qFBEbchykKgTYJxLBlyCWPlDUojyFGlsIswTs5JKIRc0YgolYwlwHzUsBa4VDsjtrrduqq9OuzZbW6d0UchSV53LAIFBgjymHh3uUNVUzjXaZHVj17LZZECzrb7sV1-21Zd5fT5wve_uVmudH_A_Xx642QPSKVmYRpbKun8uiZNEUPTc1Y6zWuvDOvYvJIziDxLQfjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312173460</pqid></control><display><type>article</type><title>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</title><source>IEEE Electronic Library (IEL)</source><creator>MomayyezSiahkal, P. ; Siddiqi, K.</creator><creatorcontrib>MomayyezSiahkal, P. ; Siddiqi, K.</creatorcontrib><description>The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.184</identifier><identifier>PMID: 23428434</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>3D directional random walk ; Algorithms ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Brain - anatomy & histology ; Brain - physiology ; Brain Mapping - methods ; Cluster Analysis ; completion fields ; Computer science; control theory; systems ; Computer Simulation ; Diffusion Magnetic Resonance Imaging - methods ; diffusion MRI ; Discrete wavelet transforms ; Equations ; Exact sciences and technology ; Fokker-Planck equation ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic resonance imaging ; Mathematical model ; Medical sciences ; Nervous system ; Pattern recognition. Digital image processing. Computational geometry ; Phantoms, Imaging ; probabilistic connectivity ; Probabilistic logic ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Reproducibility of Results ; Solid modeling ; spherical harmonics ; Stochastic Processes</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-04, Vol.35 (4), p.983-995</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</citedby><cites>FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6291720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6291720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677803$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23428434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MomayyezSiahkal, P.</creatorcontrib><creatorcontrib>Siddiqi, K.</creatorcontrib><title>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.</description><subject>3D directional random walk</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy & histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cluster Analysis</subject><subject>completion fields</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion MRI</subject><subject>Discrete wavelet transforms</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fokker-Planck equation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical model</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Phantoms, Imaging</subject><subject>probabilistic connectivity</subject><subject>Probabilistic logic</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Reproducibility of Results</subject><subject>Solid modeling</subject><subject>spherical harmonics</subject><subject>Stochastic Processes</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkDFPwzAQRi0EoqWwsiChLEgsKT6fkzhj1VKo1AoEZY5cxwajNAlxgtR_j0tLmW649326e4RcAh0C0PRu-TxazIaMAhuC4EekDymmIUaYHpM-hZiFQjDRI2fOfVIKPKJ4SnoMORMceZ_McBK8tpX6kK61KhhX67rQra3KYGp1kbvAVE2wkHVty3e_LUutWvtt201gy2BijencFl68zM7JiZGF0xf7OSBv0_vl-DGcPz3MxqN5qFBEbchykKgTYJxLBlyCWPlDUojyFGlsIswTs5JKIRc0YgolYwlwHzUsBa4VDsjtrrduqq9OuzZbW6d0UchSV53LAIFBgjymHh3uUNVUzjXaZHVj17LZZECzrb7sV1-21Zd5fT5wve_uVmudH_A_Xx642QPSKVmYRpbKun8uiZNEUPTc1Y6zWuvDOvYvJIziDxLQfjU</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>MomayyezSiahkal, P.</creator><creator>Siddiqi, K.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</title><author>MomayyezSiahkal, P. ; Siddiqi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3D directional random walk</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy & histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cluster Analysis</topic><topic>completion fields</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion MRI</topic><topic>Discrete wavelet transforms</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fokker-Planck equation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical model</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Phantoms, Imaging</topic><topic>probabilistic connectivity</topic><topic>Probabilistic logic</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Reproducibility of Results</topic><topic>Solid modeling</topic><topic>spherical harmonics</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MomayyezSiahkal, P.</creatorcontrib><creatorcontrib>Siddiqi, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MomayyezSiahkal, P.</au><au>Siddiqi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>35</volume><issue>4</issue><spage>983</spage><epage>995</epage><pages>983-995</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>23428434</pmid><doi>10.1109/TPAMI.2012.184</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2013-04, Vol.35 (4), p.983-995 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_6291720 |
source | IEEE Electronic Library (IEL) |
subjects | 3D directional random walk Algorithms Applied sciences Artificial intelligence Biological and medical sciences Brain - anatomy & histology Brain - physiology Brain Mapping - methods Cluster Analysis completion fields Computer science control theory systems Computer Simulation Diffusion Magnetic Resonance Imaging - methods diffusion MRI Discrete wavelet transforms Equations Exact sciences and technology Fokker-Planck equation Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic resonance imaging Mathematical model Medical sciences Nervous system Pattern recognition. Digital image processing. Computational geometry Phantoms, Imaging probabilistic connectivity Probabilistic logic Radiodiagnosis. Nmr imagery. Nmr spectrometry Reproducibility of Results Solid modeling spherical harmonics Stochastic Processes |
title | 3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Stochastic%20Completion%20Fields%20for%20Mapping%20Connectivity%20in%20Diffusion%20MRI&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=MomayyezSiahkal,%20P.&rft.date=2013-04-01&rft.volume=35&rft.issue=4&rft.spage=983&rft.epage=995&rft.pages=983-995&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.184&rft_dat=%3Cproquest_RIE%3E1312173460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312173460&rft_id=info:pmid/23428434&rft_ieee_id=6291720&rfr_iscdi=true |