3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI

The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-04, Vol.35 (4), p.983-995
Hauptverfasser: MomayyezSiahkal, P., Siddiqi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 4
container_start_page 983
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 35
creator MomayyezSiahkal, P.
Siddiqi, K.
description The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.
doi_str_mv 10.1109/TPAMI.2012.184
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6291720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6291720</ieee_id><sourcerecordid>1312173460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</originalsourceid><addsrcrecordid>eNpFkDFPwzAQRi0EoqWwsiChLEgsKT6fkzhj1VKo1AoEZY5cxwajNAlxgtR_j0tLmW649326e4RcAh0C0PRu-TxazIaMAhuC4EekDymmIUaYHpM-hZiFQjDRI2fOfVIKPKJ4SnoMORMceZ_McBK8tpX6kK61KhhX67rQra3KYGp1kbvAVE2wkHVty3e_LUutWvtt201gy2BijencFl68zM7JiZGF0xf7OSBv0_vl-DGcPz3MxqN5qFBEbchykKgTYJxLBlyCWPlDUojyFGlsIswTs5JKIRc0YgolYwlwHzUsBa4VDsjtrrduqq9OuzZbW6d0UchSV53LAIFBgjymHh3uUNVUzjXaZHVj17LZZECzrb7sV1-21Zd5fT5wve_uVmudH_A_Xx642QPSKVmYRpbKun8uiZNEUPTc1Y6zWuvDOvYvJIziDxLQfjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312173460</pqid></control><display><type>article</type><title>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</title><source>IEEE Electronic Library (IEL)</source><creator>MomayyezSiahkal, P. ; Siddiqi, K.</creator><creatorcontrib>MomayyezSiahkal, P. ; Siddiqi, K.</creatorcontrib><description>The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.184</identifier><identifier>PMID: 23428434</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>3D directional random walk ; Algorithms ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Brain - anatomy &amp; histology ; Brain - physiology ; Brain Mapping - methods ; Cluster Analysis ; completion fields ; Computer science; control theory; systems ; Computer Simulation ; Diffusion Magnetic Resonance Imaging - methods ; diffusion MRI ; Discrete wavelet transforms ; Equations ; Exact sciences and technology ; Fokker-Planck equation ; Humans ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic resonance imaging ; Mathematical model ; Medical sciences ; Nervous system ; Pattern recognition. Digital image processing. Computational geometry ; Phantoms, Imaging ; probabilistic connectivity ; Probabilistic logic ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Reproducibility of Results ; Solid modeling ; spherical harmonics ; Stochastic Processes</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-04, Vol.35 (4), p.983-995</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</citedby><cites>FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6291720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6291720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677803$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23428434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MomayyezSiahkal, P.</creatorcontrib><creatorcontrib>Siddiqi, K.</creatorcontrib><title>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.</description><subject>3D directional random walk</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cluster Analysis</subject><subject>completion fields</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion MRI</subject><subject>Discrete wavelet transforms</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fokker-Planck equation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical model</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Phantoms, Imaging</subject><subject>probabilistic connectivity</subject><subject>Probabilistic logic</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Reproducibility of Results</subject><subject>Solid modeling</subject><subject>spherical harmonics</subject><subject>Stochastic Processes</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkDFPwzAQRi0EoqWwsiChLEgsKT6fkzhj1VKo1AoEZY5cxwajNAlxgtR_j0tLmW649326e4RcAh0C0PRu-TxazIaMAhuC4EekDymmIUaYHpM-hZiFQjDRI2fOfVIKPKJ4SnoMORMceZ_McBK8tpX6kK61KhhX67rQra3KYGp1kbvAVE2wkHVty3e_LUutWvtt201gy2BijencFl68zM7JiZGF0xf7OSBv0_vl-DGcPz3MxqN5qFBEbchykKgTYJxLBlyCWPlDUojyFGlsIswTs5JKIRc0YgolYwlwHzUsBa4VDsjtrrduqq9OuzZbW6d0UchSV53LAIFBgjymHh3uUNVUzjXaZHVj17LZZECzrb7sV1-21Zd5fT5wve_uVmudH_A_Xx642QPSKVmYRpbKun8uiZNEUPTc1Y6zWuvDOvYvJIziDxLQfjU</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>MomayyezSiahkal, P.</creator><creator>Siddiqi, K.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</title><author>MomayyezSiahkal, P. ; Siddiqi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-2d1a3e71244a214a18b434915d9306f53d7fbacc348052c3a22714385f2914ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3D directional random walk</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cluster Analysis</topic><topic>completion fields</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion MRI</topic><topic>Discrete wavelet transforms</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fokker-Planck equation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical model</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Phantoms, Imaging</topic><topic>probabilistic connectivity</topic><topic>Probabilistic logic</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Reproducibility of Results</topic><topic>Solid modeling</topic><topic>spherical harmonics</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MomayyezSiahkal, P.</creatorcontrib><creatorcontrib>Siddiqi, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MomayyezSiahkal, P.</au><au>Siddiqi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>35</volume><issue>4</issue><spage>983</spage><epage>995</epage><pages>983-995</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>23428434</pmid><doi>10.1109/TPAMI.2012.184</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2013-04, Vol.35 (4), p.983-995
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_6291720
source IEEE Electronic Library (IEL)
subjects 3D directional random walk
Algorithms
Applied sciences
Artificial intelligence
Biological and medical sciences
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Cluster Analysis
completion fields
Computer science
control theory
systems
Computer Simulation
Diffusion Magnetic Resonance Imaging - methods
diffusion MRI
Discrete wavelet transforms
Equations
Exact sciences and technology
Fokker-Planck equation
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic resonance imaging
Mathematical model
Medical sciences
Nervous system
Pattern recognition. Digital image processing. Computational geometry
Phantoms, Imaging
probabilistic connectivity
Probabilistic logic
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Reproducibility of Results
Solid modeling
spherical harmonics
Stochastic Processes
title 3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Stochastic%20Completion%20Fields%20for%20Mapping%20Connectivity%20in%20Diffusion%20MRI&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=MomayyezSiahkal,%20P.&rft.date=2013-04-01&rft.volume=35&rft.issue=4&rft.spage=983&rft.epage=995&rft.pages=983-995&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.184&rft_dat=%3Cproquest_RIE%3E1312173460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312173460&rft_id=info:pmid/23428434&rft_ieee_id=6291720&rfr_iscdi=true