Maneuvering target tracking using an unbiased nearly constant heading model

This paper addresses the problem of modeling maneuvering target motion in tracking applications. Moving targets typically follow deterministic straight-line or curved trajectories, with minor deviations due to random disturbances. As a result, modeling target motion typically involves the derivation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kountouriotis, P. A., Maskell, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2255
container_issue
container_start_page 2249
container_title
container_volume
creator Kountouriotis, P. A.
Maskell, S.
description This paper addresses the problem of modeling maneuvering target motion in tracking applications. Moving targets typically follow deterministic straight-line or curved trajectories, with minor deviations due to random disturbances. As a result, modeling target motion typically involves the derivation of state transition functions based on the laws of kinematics, with the addition of uncertainty terms in the form of random noise to compensate for model mismatch. Although it is possible to construct quite accurate models, there is a trade-off between model simplicity (and, thus, ease of implementation) and model accuracy. In this paper, we present a model for target motion that is based on a Brownian description of the target's speed and heading, which allows the derivation of closed form expressions for the exact first two moments of the propagated probability density function of the target's state vector. We outline the design of tracking algorithms based on this model, and demonstrate its effectiveness in dealing with maneuvering targets based on simulations.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6290578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6290578</ieee_id><sourcerecordid>6290578</sourcerecordid><originalsourceid>FETCH-ieee_primary_62905783</originalsourceid><addsrcrecordid>eNp9ikEKwjAURCMiaLUncJMLCEkbk3QtiiDu3Jdv863RNpUkFXp7Lbh2FvMY3kxIwgqdCZFrIack4UKqnAmuxJykITzYN0pzLtWCnM7gsH-jt66mEXyNkUYP1XPcfRgbHO3d1UJAQx2CbwZadS5EcJHeEcz4aTuDzYrMbtAETH9ckvVhf9kdNxYRy5e3LfihlFnBtkrn_-0HNrE6LQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maneuvering target tracking using an unbiased nearly constant heading model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kountouriotis, P. A. ; Maskell, S.</creator><creatorcontrib>Kountouriotis, P. A. ; Maskell, S.</creatorcontrib><description>This paper addresses the problem of modeling maneuvering target motion in tracking applications. Moving targets typically follow deterministic straight-line or curved trajectories, with minor deviations due to random disturbances. As a result, modeling target motion typically involves the derivation of state transition functions based on the laws of kinematics, with the addition of uncertainty terms in the form of random noise to compensate for model mismatch. Although it is possible to construct quite accurate models, there is a trade-off between model simplicity (and, thus, ease of implementation) and model accuracy. In this paper, we present a model for target motion that is based on a Brownian description of the target's speed and heading, which allows the derivation of closed form expressions for the exact first two moments of the propagated probability density function of the target's state vector. We outline the design of tracking algorithms based on this model, and demonstrate its effectiveness in dealing with maneuvering targets based on simulations.</description><identifier>ISBN: 1467304174</identifier><identifier>ISBN: 9781467304177</identifier><identifier>EISBN: 0982443846</identifier><identifier>EISBN: 9780982443842</identifier><identifier>EISBN: 0982443854</identifier><identifier>EISBN: 9780982443859</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Equations ; Kalman filters ; Mathematical model ; Target tracking ; Vectors</subject><ispartof>2012 15th International Conference on Information Fusion, 2012, p.2249-2255</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6290578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6290578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kountouriotis, P. A.</creatorcontrib><creatorcontrib>Maskell, S.</creatorcontrib><title>Maneuvering target tracking using an unbiased nearly constant heading model</title><title>2012 15th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>This paper addresses the problem of modeling maneuvering target motion in tracking applications. Moving targets typically follow deterministic straight-line or curved trajectories, with minor deviations due to random disturbances. As a result, modeling target motion typically involves the derivation of state transition functions based on the laws of kinematics, with the addition of uncertainty terms in the form of random noise to compensate for model mismatch. Although it is possible to construct quite accurate models, there is a trade-off between model simplicity (and, thus, ease of implementation) and model accuracy. In this paper, we present a model for target motion that is based on a Brownian description of the target's speed and heading, which allows the derivation of closed form expressions for the exact first two moments of the propagated probability density function of the target's state vector. We outline the design of tracking algorithms based on this model, and demonstrate its effectiveness in dealing with maneuvering targets based on simulations.</description><subject>Approximation algorithms</subject><subject>Equations</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Target tracking</subject><subject>Vectors</subject><isbn>1467304174</isbn><isbn>9781467304177</isbn><isbn>0982443846</isbn><isbn>9780982443842</isbn><isbn>0982443854</isbn><isbn>9780982443859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9ikEKwjAURCMiaLUncJMLCEkbk3QtiiDu3Jdv863RNpUkFXp7Lbh2FvMY3kxIwgqdCZFrIack4UKqnAmuxJykITzYN0pzLtWCnM7gsH-jt66mEXyNkUYP1XPcfRgbHO3d1UJAQx2CbwZadS5EcJHeEcz4aTuDzYrMbtAETH9ckvVhf9kdNxYRy5e3LfihlFnBtkrn_-0HNrE6LQ</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Kountouriotis, P. A.</creator><creator>Maskell, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Maneuvering target tracking using an unbiased nearly constant heading model</title><author>Kountouriotis, P. A. ; Maskell, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_62905783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation algorithms</topic><topic>Equations</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Target tracking</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kountouriotis, P. A.</creatorcontrib><creatorcontrib>Maskell, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kountouriotis, P. A.</au><au>Maskell, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maneuvering target tracking using an unbiased nearly constant heading model</atitle><btitle>2012 15th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2012-07</date><risdate>2012</risdate><spage>2249</spage><epage>2255</epage><pages>2249-2255</pages><isbn>1467304174</isbn><isbn>9781467304177</isbn><eisbn>0982443846</eisbn><eisbn>9780982443842</eisbn><eisbn>0982443854</eisbn><eisbn>9780982443859</eisbn><abstract>This paper addresses the problem of modeling maneuvering target motion in tracking applications. Moving targets typically follow deterministic straight-line or curved trajectories, with minor deviations due to random disturbances. As a result, modeling target motion typically involves the derivation of state transition functions based on the laws of kinematics, with the addition of uncertainty terms in the form of random noise to compensate for model mismatch. Although it is possible to construct quite accurate models, there is a trade-off between model simplicity (and, thus, ease of implementation) and model accuracy. In this paper, we present a model for target motion that is based on a Brownian description of the target's speed and heading, which allows the derivation of closed form expressions for the exact first two moments of the propagated probability density function of the target's state vector. We outline the design of tracking algorithms based on this model, and demonstrate its effectiveness in dealing with maneuvering targets based on simulations.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467304174
ispartof 2012 15th International Conference on Information Fusion, 2012, p.2249-2255
issn
language eng
recordid cdi_ieee_primary_6290578
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Equations
Kalman filters
Mathematical model
Target tracking
Vectors
title Maneuvering target tracking using an unbiased nearly constant heading model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maneuvering%20target%20tracking%20using%20an%20unbiased%20nearly%20constant%20heading%20model&rft.btitle=2012%2015th%20International%20Conference%20on%20Information%20Fusion&rft.au=Kountouriotis,%20P.%20A.&rft.date=2012-07&rft.spage=2249&rft.epage=2255&rft.pages=2249-2255&rft.isbn=1467304174&rft.isbn_list=9781467304177&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6290578%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0982443846&rft.eisbn_list=9780982443842&rft.eisbn_list=0982443854&rft.eisbn_list=9780982443859&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6290578&rfr_iscdi=true