A unified approach to state estimation problems under data and model uncertainties

We present a unified approach to the problem of state estimation under measurement and model uncertainties. The approach allows formulation of problems such as maneuvering target tracking, target tracking in clutter, and multiple target tracking using a single state-space system with random matrix c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sigalov, D., Michaeli, T., Oshman, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2576
container_issue
container_start_page 2569
container_title
container_volume
creator Sigalov, D.
Michaeli, T.
Oshman, Y.
description We present a unified approach to the problem of state estimation under measurement and model uncertainties. The approach allows formulation of problems such as maneuvering target tracking, target tracking in clutter, and multiple target tracking using a single state-space system with random matrix coefficients. Consequently, all may be solved efficiently using a single IMM algorithm or using a linear optimal filter, derived elsewhere, thus replacing the need for deriving a unique algorithm for each problem.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6290466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6290466</ieee_id><sourcerecordid>6290466</sourcerecordid><originalsourceid>FETCH-ieee_primary_62904663</originalsourceid><addsrcrecordid>eNp9jLEKwjAURSMiaLVf4PJ-QEjakLSjiOIs7uXZvGKkTUoSB__eDM7e5cA9l7tgBW-bSsq6kWrJCiGVrrkUWq5ZGeOL5-hGCKU37HaEt7ODJQM4z8Fj_4TkISZMBBSTnTBZ7yCrx0hTzGtDAQwmBHQGJm9ozGVPIaF1yVLcsdWAY6Tyxy3bX8730_VgiaibQ74Mn05VLZdK1f_tF9XbPI0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A unified approach to state estimation problems under data and model uncertainties</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sigalov, D. ; Michaeli, T. ; Oshman, Y.</creator><creatorcontrib>Sigalov, D. ; Michaeli, T. ; Oshman, Y.</creatorcontrib><description>We present a unified approach to the problem of state estimation under measurement and model uncertainties. The approach allows formulation of problems such as maneuvering target tracking, target tracking in clutter, and multiple target tracking using a single state-space system with random matrix coefficients. Consequently, all may be solved efficiently using a single IMM algorithm or using a linear optimal filter, derived elsewhere, thus replacing the need for deriving a unique algorithm for each problem.</description><identifier>ISBN: 1467304174</identifier><identifier>ISBN: 9781467304177</identifier><identifier>EISBN: 0982443846</identifier><identifier>EISBN: 9780982443842</identifier><identifier>EISBN: 0982443854</identifier><identifier>EISBN: 9780982443859</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; clutter and data association ; Covariance matrix ; hybrid systems ; Maneuvering target tracking ; Mathematical model ; multiple target tracking ; Noise ; Noise measurement ; Target tracking ; Time measurement</subject><ispartof>2012 15th International Conference on Information Fusion, 2012, p.2569-2576</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6290466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6290466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sigalov, D.</creatorcontrib><creatorcontrib>Michaeli, T.</creatorcontrib><creatorcontrib>Oshman, Y.</creatorcontrib><title>A unified approach to state estimation problems under data and model uncertainties</title><title>2012 15th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>We present a unified approach to the problem of state estimation under measurement and model uncertainties. The approach allows formulation of problems such as maneuvering target tracking, target tracking in clutter, and multiple target tracking using a single state-space system with random matrix coefficients. Consequently, all may be solved efficiently using a single IMM algorithm or using a linear optimal filter, derived elsewhere, thus replacing the need for deriving a unique algorithm for each problem.</description><subject>Clutter</subject><subject>clutter and data association</subject><subject>Covariance matrix</subject><subject>hybrid systems</subject><subject>Maneuvering target tracking</subject><subject>Mathematical model</subject><subject>multiple target tracking</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Target tracking</subject><subject>Time measurement</subject><isbn>1467304174</isbn><isbn>9781467304177</isbn><isbn>0982443846</isbn><isbn>9780982443842</isbn><isbn>0982443854</isbn><isbn>9780982443859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jLEKwjAURSMiaLVf4PJ-QEjakLSjiOIs7uXZvGKkTUoSB__eDM7e5cA9l7tgBW-bSsq6kWrJCiGVrrkUWq5ZGeOL5-hGCKU37HaEt7ODJQM4z8Fj_4TkISZMBBSTnTBZ7yCrx0hTzGtDAQwmBHQGJm9ozGVPIaF1yVLcsdWAY6Tyxy3bX8730_VgiaibQ74Mn05VLZdK1f_tF9XbPI0</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Sigalov, D.</creator><creator>Michaeli, T.</creator><creator>Oshman, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>A unified approach to state estimation problems under data and model uncertainties</title><author>Sigalov, D. ; Michaeli, T. ; Oshman, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_62904663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clutter</topic><topic>clutter and data association</topic><topic>Covariance matrix</topic><topic>hybrid systems</topic><topic>Maneuvering target tracking</topic><topic>Mathematical model</topic><topic>multiple target tracking</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Target tracking</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Sigalov, D.</creatorcontrib><creatorcontrib>Michaeli, T.</creatorcontrib><creatorcontrib>Oshman, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sigalov, D.</au><au>Michaeli, T.</au><au>Oshman, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A unified approach to state estimation problems under data and model uncertainties</atitle><btitle>2012 15th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2012-07</date><risdate>2012</risdate><spage>2569</spage><epage>2576</epage><pages>2569-2576</pages><isbn>1467304174</isbn><isbn>9781467304177</isbn><eisbn>0982443846</eisbn><eisbn>9780982443842</eisbn><eisbn>0982443854</eisbn><eisbn>9780982443859</eisbn><abstract>We present a unified approach to the problem of state estimation under measurement and model uncertainties. The approach allows formulation of problems such as maneuvering target tracking, target tracking in clutter, and multiple target tracking using a single state-space system with random matrix coefficients. Consequently, all may be solved efficiently using a single IMM algorithm or using a linear optimal filter, derived elsewhere, thus replacing the need for deriving a unique algorithm for each problem.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467304174
ispartof 2012 15th International Conference on Information Fusion, 2012, p.2569-2576
issn
language eng
recordid cdi_ieee_primary_6290466
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clutter
clutter and data association
Covariance matrix
hybrid systems
Maneuvering target tracking
Mathematical model
multiple target tracking
Noise
Noise measurement
Target tracking
Time measurement
title A unified approach to state estimation problems under data and model uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20unified%20approach%20to%20state%20estimation%20problems%20under%20data%20and%20model%20uncertainties&rft.btitle=2012%2015th%20International%20Conference%20on%20Information%20Fusion&rft.au=Sigalov,%20D.&rft.date=2012-07&rft.spage=2569&rft.epage=2576&rft.pages=2569-2576&rft.isbn=1467304174&rft.isbn_list=9781467304177&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6290466%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0982443846&rft.eisbn_list=9780982443842&rft.eisbn_list=0982443854&rft.eisbn_list=9780982443859&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6290466&rfr_iscdi=true