Design of Testable Reversible Sequential Circuits
In this paper, we propose the design of two vectors testable sequential circuits based on conservative logic gates. The proposed sequential circuits based on conservative logic gates outperform the sequential circuits implemented in classical gates in terms of testability. Any sequential circuit bas...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2013-07, Vol.21 (7), p.1201-1209 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1209 |
---|---|
container_issue | 7 |
container_start_page | 1201 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 21 |
creator | Thapliyal, H. Ranganathan, N. Kotiyal, S. |
description | In this paper, we propose the design of two vectors testable sequential circuits based on conservative logic gates. The proposed sequential circuits based on conservative logic gates outperform the sequential circuits implemented in classical gates in terms of testability. Any sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1's, and all 0's. The designs of two vectors testable latches, master-slave flip-flops and double edge triggered (DET) flip-flops are presented. The importance of the proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault by only two test vectors, thereby eliminating the need for any type of scan-path access to internal memory cells. The reversible design of the DET flip-flop is proposed for the first time in the literature. We also showed the application of the proposed approach toward 100% fault coverage for single missing/additional cell defect in the quantum-dot cellular automata (QCA) layout of the Fredkin gate. We are also presenting a new conservative logic gate called multiplexer conservative QCA gate (MX-cqca) that is not reversible in nature but has similar properties as the Fredkin gate of working as 2:1 multiplexer. The proposed MX-cqca gate surpasses the Fredkin gate in terms of complexity (the number of majority voters), speed, and area. |
doi_str_mv | 10.1109/TVLSI.2012.2209688 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6290432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6290432</ieee_id><sourcerecordid>27531816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-33038a4c654a94052eae36401f649677cf37a676d21d5d011c94bd354db346cf3</originalsourceid><addsrcrecordid>eNo9j01Lw0AQhhdRsFb_gF5y8Zg4s1_JHqVaLQQEW72G7WYiKzGtu6ngvzc1pXOZgfd9Bh7GrhEyRDB3q_dyucg4IM84B6OL4oRNUKk8NcOcDjdokRYc4ZxdxPgJgFIamDB8oOg_umTTJCuKvV23lLzSD4Xo9-eSvnfU9d62ycwHt_N9vGRnjW0jXR32lL3NH1ez57R8eVrM7svUCan7VAgQhZVOK2mNBMXJktASsNHS6Dx3jcitznXNsVY1IDoj17VQsl4P_JBOGR__urCJMVBTbYP_suG3Qqj20tW_dLWXrg7SA3Q7QlsbnW2bYDvn45HkuRJYoB56N2PPE9Ex1tyAFFz8AbZfXvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of Testable Reversible Sequential Circuits</title><source>IEEE Electronic Library Online</source><creator>Thapliyal, H. ; Ranganathan, N. ; Kotiyal, S.</creator><creatorcontrib>Thapliyal, H. ; Ranganathan, N. ; Kotiyal, S.</creatorcontrib><description>In this paper, we propose the design of two vectors testable sequential circuits based on conservative logic gates. The proposed sequential circuits based on conservative logic gates outperform the sequential circuits implemented in classical gates in terms of testability. Any sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1's, and all 0's. The designs of two vectors testable latches, master-slave flip-flops and double edge triggered (DET) flip-flops are presented. The importance of the proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault by only two test vectors, thereby eliminating the need for any type of scan-path access to internal memory cells. The reversible design of the DET flip-flop is proposed for the first time in the literature. We also showed the application of the proposed approach toward 100% fault coverage for single missing/additional cell defect in the quantum-dot cellular automata (QCA) layout of the Fredkin gate. We are also presenting a new conservative logic gate called multiplexer conservative QCA gate (MX-cqca) that is not reversible in nature but has similar properties as the Fredkin gate of working as 2:1 multiplexer. The proposed MX-cqca gate surpasses the Fredkin gate in terms of complexity (the number of majority voters), speed, and area.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2012.2209688</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automata. Abstract machines. Turing machines ; Cellular automata ; Circuit faults ; Circuit properties ; Clocks ; Computer science; control theory; systems ; conservative logic ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fredkin gate ; Latches ; Logic gates ; Magnetic and optical mass memories ; Master-slave ; Molecular electronics, nanoelectronics ; quantum-dot ; reversible logic ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sequential circuits ; Storage and reproduction of information ; Theoretical computing ; Vectors</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2013-07, Vol.21 (7), p.1201-1209</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-33038a4c654a94052eae36401f649677cf37a676d21d5d011c94bd354db346cf3</citedby><cites>FETCH-LOGICAL-c346t-33038a4c654a94052eae36401f649677cf37a676d21d5d011c94bd354db346cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6290432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6290432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27531816$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thapliyal, H.</creatorcontrib><creatorcontrib>Ranganathan, N.</creatorcontrib><creatorcontrib>Kotiyal, S.</creatorcontrib><title>Design of Testable Reversible Sequential Circuits</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we propose the design of two vectors testable sequential circuits based on conservative logic gates. The proposed sequential circuits based on conservative logic gates outperform the sequential circuits implemented in classical gates in terms of testability. Any sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1's, and all 0's. The designs of two vectors testable latches, master-slave flip-flops and double edge triggered (DET) flip-flops are presented. The importance of the proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault by only two test vectors, thereby eliminating the need for any type of scan-path access to internal memory cells. The reversible design of the DET flip-flop is proposed for the first time in the literature. We also showed the application of the proposed approach toward 100% fault coverage for single missing/additional cell defect in the quantum-dot cellular automata (QCA) layout of the Fredkin gate. We are also presenting a new conservative logic gate called multiplexer conservative QCA gate (MX-cqca) that is not reversible in nature but has similar properties as the Fredkin gate of working as 2:1 multiplexer. The proposed MX-cqca gate surpasses the Fredkin gate in terms of complexity (the number of majority voters), speed, and area.</description><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Cellular automata</subject><subject>Circuit faults</subject><subject>Circuit properties</subject><subject>Clocks</subject><subject>Computer science; control theory; systems</subject><subject>conservative logic</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fredkin gate</subject><subject>Latches</subject><subject>Logic gates</subject><subject>Magnetic and optical mass memories</subject><subject>Master-slave</subject><subject>Molecular electronics, nanoelectronics</subject><subject>quantum-dot</subject><subject>reversible logic</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sequential circuits</subject><subject>Storage and reproduction of information</subject><subject>Theoretical computing</subject><subject>Vectors</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01Lw0AQhhdRsFb_gF5y8Zg4s1_JHqVaLQQEW72G7WYiKzGtu6ngvzc1pXOZgfd9Bh7GrhEyRDB3q_dyucg4IM84B6OL4oRNUKk8NcOcDjdokRYc4ZxdxPgJgFIamDB8oOg_umTTJCuKvV23lLzSD4Xo9-eSvnfU9d62ycwHt_N9vGRnjW0jXR32lL3NH1ez57R8eVrM7svUCan7VAgQhZVOK2mNBMXJktASsNHS6Dx3jcitznXNsVY1IDoj17VQsl4P_JBOGR__urCJMVBTbYP_suG3Qqj20tW_dLWXrg7SA3Q7QlsbnW2bYDvn45HkuRJYoB56N2PPE9Ex1tyAFFz8AbZfXvM</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Thapliyal, H.</creator><creator>Ranganathan, N.</creator><creator>Kotiyal, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130701</creationdate><title>Design of Testable Reversible Sequential Circuits</title><author>Thapliyal, H. ; Ranganathan, N. ; Kotiyal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-33038a4c654a94052eae36401f649677cf37a676d21d5d011c94bd354db346cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Cellular automata</topic><topic>Circuit faults</topic><topic>Circuit properties</topic><topic>Clocks</topic><topic>Computer science; control theory; systems</topic><topic>conservative logic</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fredkin gate</topic><topic>Latches</topic><topic>Logic gates</topic><topic>Magnetic and optical mass memories</topic><topic>Master-slave</topic><topic>Molecular electronics, nanoelectronics</topic><topic>quantum-dot</topic><topic>reversible logic</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sequential circuits</topic><topic>Storage and reproduction of information</topic><topic>Theoretical computing</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thapliyal, H.</creatorcontrib><creatorcontrib>Ranganathan, N.</creatorcontrib><creatorcontrib>Kotiyal, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thapliyal, H.</au><au>Ranganathan, N.</au><au>Kotiyal, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Testable Reversible Sequential Circuits</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>21</volume><issue>7</issue><spage>1201</spage><epage>1209</epage><pages>1201-1209</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we propose the design of two vectors testable sequential circuits based on conservative logic gates. The proposed sequential circuits based on conservative logic gates outperform the sequential circuits implemented in classical gates in terms of testability. Any sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1's, and all 0's. The designs of two vectors testable latches, master-slave flip-flops and double edge triggered (DET) flip-flops are presented. The importance of the proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault by only two test vectors, thereby eliminating the need for any type of scan-path access to internal memory cells. The reversible design of the DET flip-flop is proposed for the first time in the literature. We also showed the application of the proposed approach toward 100% fault coverage for single missing/additional cell defect in the quantum-dot cellular automata (QCA) layout of the Fredkin gate. We are also presenting a new conservative logic gate called multiplexer conservative QCA gate (MX-cqca) that is not reversible in nature but has similar properties as the Fredkin gate of working as 2:1 multiplexer. The proposed MX-cqca gate surpasses the Fredkin gate in terms of complexity (the number of majority voters), speed, and area.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2012.2209688</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2013-07, Vol.21 (7), p.1201-1209 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_ieee_primary_6290432 |
source | IEEE Electronic Library Online |
subjects | Applied sciences Automata. Abstract machines. Turing machines Cellular automata Circuit faults Circuit properties Clocks Computer science control theory systems conservative logic Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Fredkin gate Latches Logic gates Magnetic and optical mass memories Master-slave Molecular electronics, nanoelectronics quantum-dot reversible logic Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sequential circuits Storage and reproduction of information Theoretical computing Vectors |
title | Design of Testable Reversible Sequential Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Testable%20Reversible%20Sequential%20Circuits&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Thapliyal,%20H.&rft.date=2013-07-01&rft.volume=21&rft.issue=7&rft.spage=1201&rft.epage=1209&rft.pages=1201-1209&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2012.2209688&rft_dat=%3Cpascalfrancis_RIE%3E27531816%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6290432&rfr_iscdi=true |