Noise aware analysis operator learning for approximately cosparse signals
This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we in...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5412 |
---|---|
container_issue | |
container_start_page | 5409 |
container_title | |
container_volume | |
creator | Yaghoobi, M. Sangnam Nam Gribonval, R. Davies, M. E. |
description | This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator. |
doi_str_mv | 10.1109/ICASSP.2012.6289144 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6289144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289144</ieee_id><sourcerecordid>oai_HAL_hal_00661549v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h320t-527d394f3221a6ca272090867e080b48a5e37274f27b9fe4a4a79ac62c2f8d423</originalsourceid><addsrcrecordid>eNo9UE1PwzAMDV8SY_QX7NIrhxbHSZPmOE3AJk2ANJC4VV6XbkFlrZIJ2L8naAMf_GT7vacnMzbikHMO5nY2GS8WzzkCx1xhabiUJywxuuRSaQEglTllAxTaZNzA2xm7-jsU8pwNeIGQKS7NJUtCeIdYUQpCDdjssXPBpvRFPvYttfvgQtr11tOu82lryW_ddp02caC-9923-6Cdbfdp3YWefNQGt466cM0umgg2OeKQvd7fvUym2fzpIeafZxuBsMsK1CthZCMQOamaUCMYKJW2UMJSllRYoVHLBvXSNFaSJG2oVlhjU64kiiG7OfhuqK16H-P4fdWRq6bjefW7A1CKF9J88sgdHbjOWvtPPn5Q_ADjp1_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Noise aware analysis operator learning for approximately cosparse signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yaghoobi, M. ; Sangnam Nam ; Gribonval, R. ; Davies, M. E.</creator><creatorcontrib>Yaghoobi, M. ; Sangnam Nam ; Gribonval, R. ; Davies, M. E.</creatorcontrib><description>This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Analysis Framework ; Analysis Operator Learning ; Analytical models ; Approximation methods ; Computer Science ; Cosparse Signal Model ; Dictionaries ; Douglas-Rachford Splitting ; Engineering Sciences ; Face ; Noise ; Optimization ; Signal and Image Processing ; Sparse Approximation</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5409-5412</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9450-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,778,782,787,788,883,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-00661549$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaghoobi, M.</creatorcontrib><creatorcontrib>Sangnam Nam</creatorcontrib><creatorcontrib>Gribonval, R.</creatorcontrib><creatorcontrib>Davies, M. E.</creatorcontrib><title>Noise aware analysis operator learning for approximately cosparse signals</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.</description><subject>Algorithm design and analysis</subject><subject>Analysis Framework</subject><subject>Analysis Operator Learning</subject><subject>Analytical models</subject><subject>Approximation methods</subject><subject>Computer Science</subject><subject>Cosparse Signal Model</subject><subject>Dictionaries</subject><subject>Douglas-Rachford Splitting</subject><subject>Engineering Sciences</subject><subject>Face</subject><subject>Noise</subject><subject>Optimization</subject><subject>Signal and Image Processing</subject><subject>Sparse Approximation</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UE1PwzAMDV8SY_QX7NIrhxbHSZPmOE3AJk2ANJC4VV6XbkFlrZIJ2L8naAMf_GT7vacnMzbikHMO5nY2GS8WzzkCx1xhabiUJywxuuRSaQEglTllAxTaZNzA2xm7-jsU8pwNeIGQKS7NJUtCeIdYUQpCDdjssXPBpvRFPvYttfvgQtr11tOu82lryW_ddp02caC-9923-6Cdbfdp3YWefNQGt466cM0umgg2OeKQvd7fvUym2fzpIeafZxuBsMsK1CthZCMQOamaUCMYKJW2UMJSllRYoVHLBvXSNFaSJG2oVlhjU64kiiG7OfhuqK16H-P4fdWRq6bjefW7A1CKF9J88sgdHbjOWvtPPn5Q_ADjp1_r</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yaghoobi, M.</creator><creator>Sangnam Nam</creator><creator>Gribonval, R.</creator><creator>Davies, M. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid></search><sort><creationdate>20120101</creationdate><title>Noise aware analysis operator learning for approximately cosparse signals</title><author>Yaghoobi, M. ; Sangnam Nam ; Gribonval, R. ; Davies, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h320t-527d394f3221a6ca272090867e080b48a5e37274f27b9fe4a4a79ac62c2f8d423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Analysis Framework</topic><topic>Analysis Operator Learning</topic><topic>Analytical models</topic><topic>Approximation methods</topic><topic>Computer Science</topic><topic>Cosparse Signal Model</topic><topic>Dictionaries</topic><topic>Douglas-Rachford Splitting</topic><topic>Engineering Sciences</topic><topic>Face</topic><topic>Noise</topic><topic>Optimization</topic><topic>Signal and Image Processing</topic><topic>Sparse Approximation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaghoobi, M.</creatorcontrib><creatorcontrib>Sangnam Nam</creatorcontrib><creatorcontrib>Gribonval, R.</creatorcontrib><creatorcontrib>Davies, M. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaghoobi, M.</au><au>Sangnam Nam</au><au>Gribonval, R.</au><au>Davies, M. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Noise aware analysis operator learning for approximately cosparse signals</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>5409</spage><epage>5412</epage><pages>5409-5412</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289144</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5409-5412 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6289144 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Analysis Framework Analysis Operator Learning Analytical models Approximation methods Computer Science Cosparse Signal Model Dictionaries Douglas-Rachford Splitting Engineering Sciences Face Noise Optimization Signal and Image Processing Sparse Approximation |
title | Noise aware analysis operator learning for approximately cosparse signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Noise%20aware%20analysis%20operator%20learning%20for%20approximately%20cosparse%20signals&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Yaghoobi,%20M.&rft.date=2012-01-01&rft.spage=5409&rft.epage=5412&rft.pages=5409-5412&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289144&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00661549v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289144&rfr_iscdi=true |