Noise aware analysis operator learning for approximately cosparse signals

This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yaghoobi, M., Sangnam Nam, Gribonval, R., Davies, M. E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5412
container_issue
container_start_page 5409
container_title
container_volume
creator Yaghoobi, M.
Sangnam Nam
Gribonval, R.
Davies, M. E.
description This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.
doi_str_mv 10.1109/ICASSP.2012.6289144
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6289144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289144</ieee_id><sourcerecordid>oai_HAL_hal_00661549v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h320t-527d394f3221a6ca272090867e080b48a5e37274f27b9fe4a4a79ac62c2f8d423</originalsourceid><addsrcrecordid>eNo9UE1PwzAMDV8SY_QX7NIrhxbHSZPmOE3AJk2ANJC4VV6XbkFlrZIJ2L8naAMf_GT7vacnMzbikHMO5nY2GS8WzzkCx1xhabiUJywxuuRSaQEglTllAxTaZNzA2xm7-jsU8pwNeIGQKS7NJUtCeIdYUQpCDdjssXPBpvRFPvYttfvgQtr11tOu82lryW_ddp02caC-9923-6Cdbfdp3YWefNQGt466cM0umgg2OeKQvd7fvUym2fzpIeafZxuBsMsK1CthZCMQOamaUCMYKJW2UMJSllRYoVHLBvXSNFaSJG2oVlhjU64kiiG7OfhuqK16H-P4fdWRq6bjefW7A1CKF9J88sgdHbjOWvtPPn5Q_ADjp1_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Noise aware analysis operator learning for approximately cosparse signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yaghoobi, M. ; Sangnam Nam ; Gribonval, R. ; Davies, M. E.</creator><creatorcontrib>Yaghoobi, M. ; Sangnam Nam ; Gribonval, R. ; Davies, M. E.</creatorcontrib><description>This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Analysis Framework ; Analysis Operator Learning ; Analytical models ; Approximation methods ; Computer Science ; Cosparse Signal Model ; Dictionaries ; Douglas-Rachford Splitting ; Engineering Sciences ; Face ; Noise ; Optimization ; Signal and Image Processing ; Sparse Approximation</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5409-5412</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9450-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,778,782,787,788,883,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-00661549$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaghoobi, M.</creatorcontrib><creatorcontrib>Sangnam Nam</creatorcontrib><creatorcontrib>Gribonval, R.</creatorcontrib><creatorcontrib>Davies, M. E.</creatorcontrib><title>Noise aware analysis operator learning for approximately cosparse signals</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.</description><subject>Algorithm design and analysis</subject><subject>Analysis Framework</subject><subject>Analysis Operator Learning</subject><subject>Analytical models</subject><subject>Approximation methods</subject><subject>Computer Science</subject><subject>Cosparse Signal Model</subject><subject>Dictionaries</subject><subject>Douglas-Rachford Splitting</subject><subject>Engineering Sciences</subject><subject>Face</subject><subject>Noise</subject><subject>Optimization</subject><subject>Signal and Image Processing</subject><subject>Sparse Approximation</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UE1PwzAMDV8SY_QX7NIrhxbHSZPmOE3AJk2ANJC4VV6XbkFlrZIJ2L8naAMf_GT7vacnMzbikHMO5nY2GS8WzzkCx1xhabiUJywxuuRSaQEglTllAxTaZNzA2xm7-jsU8pwNeIGQKS7NJUtCeIdYUQpCDdjssXPBpvRFPvYttfvgQtr11tOu82lryW_ddp02caC-9923-6Cdbfdp3YWefNQGt466cM0umgg2OeKQvd7fvUym2fzpIeafZxuBsMsK1CthZCMQOamaUCMYKJW2UMJSllRYoVHLBvXSNFaSJG2oVlhjU64kiiG7OfhuqK16H-P4fdWRq6bjefW7A1CKF9J88sgdHbjOWvtPPn5Q_ADjp1_r</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yaghoobi, M.</creator><creator>Sangnam Nam</creator><creator>Gribonval, R.</creator><creator>Davies, M. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid></search><sort><creationdate>20120101</creationdate><title>Noise aware analysis operator learning for approximately cosparse signals</title><author>Yaghoobi, M. ; Sangnam Nam ; Gribonval, R. ; Davies, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h320t-527d394f3221a6ca272090867e080b48a5e37274f27b9fe4a4a79ac62c2f8d423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Analysis Framework</topic><topic>Analysis Operator Learning</topic><topic>Analytical models</topic><topic>Approximation methods</topic><topic>Computer Science</topic><topic>Cosparse Signal Model</topic><topic>Dictionaries</topic><topic>Douglas-Rachford Splitting</topic><topic>Engineering Sciences</topic><topic>Face</topic><topic>Noise</topic><topic>Optimization</topic><topic>Signal and Image Processing</topic><topic>Sparse Approximation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaghoobi, M.</creatorcontrib><creatorcontrib>Sangnam Nam</creatorcontrib><creatorcontrib>Gribonval, R.</creatorcontrib><creatorcontrib>Davies, M. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaghoobi, M.</au><au>Sangnam Nam</au><au>Gribonval, R.</au><au>Davies, M. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Noise aware analysis operator learning for approximately cosparse signals</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>5409</spage><epage>5412</epage><pages>5409-5412</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>This paper investigates analysis operator learning for the recently introduced cosparse signal model that is a natural analysis complement to the more traditional sparse signal model. Previous work on such analysis operator learning has relied on access to a set of clean training samples. Here we introduce a new learning framework which can use training data which is corrupted by noise and/or is only approximately cosparse. The new model assumes that a p-cosparse signal exists in an epsilon neighborhood of each data point. The operator is assumed to be uniformly normalized tight frame (UNTF) to exclude some trivial operators. In this setting, an alternating optimization algorithm is introduced to learn a suitable analysis operator.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289144</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5409-5412
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6289144
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Analysis Framework
Analysis Operator Learning
Analytical models
Approximation methods
Computer Science
Cosparse Signal Model
Dictionaries
Douglas-Rachford Splitting
Engineering Sciences
Face
Noise
Optimization
Signal and Image Processing
Sparse Approximation
title Noise aware analysis operator learning for approximately cosparse signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Noise%20aware%20analysis%20operator%20learning%20for%20approximately%20cosparse%20signals&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Yaghoobi,%20M.&rft.date=2012-01-01&rft.spage=5409&rft.epage=5412&rft.pages=5409-5412&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289144&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00661549v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289144&rfr_iscdi=true