Topic identification based extrinsic evaluation of summarization techniques applied to conversational speech

Document summarization algorithms are most commonly evaluated according to the intrinsic quality of the summaries they produce. An alternate approach is to examine the extrinsic utility of a summary, measured by the ability of the summary to aid a human in the completion of a specific task. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harwath, D., Hazen, T. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5076
container_issue
container_start_page 5073
container_title
container_volume
creator Harwath, D.
Hazen, T. J.
description Document summarization algorithms are most commonly evaluated according to the intrinsic quality of the summaries they produce. An alternate approach is to examine the extrinsic utility of a summary, measured by the ability of the summary to aid a human in the completion of a specific task. In this paper, we use topic identification as a proxy for relevancy determination in the context of an information retrieval task, and a summary is deemed effective if it enables a user to determine the topical content of a retrieved document. We utilize Amazon's Mechanical Turk service to perform a large-scale human study contrasting four different summarization systems applied to conversational speech from the Fisher Corpus. We show that these results appear to be correlated with the performance of an automated topic identification system, and argue that this automated system can act as a low-cost proxy for a human evaluation during the development stages of a summarization system.
doi_str_mv 10.1109/ICASSP.2012.6289061
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6289061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6289061</ieee_id><sourcerecordid>6289061</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-783789a62495225414bdf78c14604926455c41ef8bec6e4bb2a63d5e541370833</originalsourceid><addsrcrecordid>eNo1kNtKw0AQhtcTWGueoDf7Aol7PlxK8QQFhVbwrmw2E1xJk5hNivr0LrbOzcD83z_MPwgtKCkoJfbmaXm7Xr8UjFBWKGYsUfQEZVYbKpTmhAhlT9GMcW1zasnbGbr6F6Q4RzMqGckVFfYSZTF-kFTJSriaoWbT9cHjUEE7hjp4N4auxaWLUGH4GofQxiTD3jXTQepqHKfdzg3h5zAYwb-34XOCiF3fNyEZxw77rt3DEP8Q1-DYQ8Ku0UXtmgjZsc_R6_3dZvmYr54fUsRVHhgjY64N18Y6xYSVjElBRVnV2viUiQjLlJDSCwq1KcErEGXJnOKVhERyTQznc7Q47A0AsO2HkM793h4fx38B-DFfkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Topic identification based extrinsic evaluation of summarization techniques applied to conversational speech</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harwath, D. ; Hazen, T. J.</creator><creatorcontrib>Harwath, D. ; Hazen, T. J.</creatorcontrib><description>Document summarization algorithms are most commonly evaluated according to the intrinsic quality of the summaries they produce. An alternate approach is to examine the extrinsic utility of a summary, measured by the ability of the summary to aid a human in the completion of a specific task. In this paper, we use topic identification as a proxy for relevancy determination in the context of an information retrieval task, and a summary is deemed effective if it enables a user to determine the topical content of a retrieved document. We utilize Amazon's Mechanical Turk service to perform a large-scale human study contrasting four different summarization systems applied to conversational speech from the Fisher Corpus. We show that these results appear to be correlated with the performance of an automated topic identification system, and argue that this automated system can act as a low-cost proxy for a human evaluation during the development stages of a summarization system.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6289061</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Context ; Document Summarization ; Error analysis ; Humans ; Probabilistic logic ; Speech ; Topic Modeling ; Vectors</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5073-5076</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6289061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6289061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harwath, D.</creatorcontrib><creatorcontrib>Hazen, T. J.</creatorcontrib><title>Topic identification based extrinsic evaluation of summarization techniques applied to conversational speech</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Document summarization algorithms are most commonly evaluated according to the intrinsic quality of the summaries they produce. An alternate approach is to examine the extrinsic utility of a summary, measured by the ability of the summary to aid a human in the completion of a specific task. In this paper, we use topic identification as a proxy for relevancy determination in the context of an information retrieval task, and a summary is deemed effective if it enables a user to determine the topical content of a retrieved document. We utilize Amazon's Mechanical Turk service to perform a large-scale human study contrasting four different summarization systems applied to conversational speech from the Fisher Corpus. We show that these results appear to be correlated with the performance of an automated topic identification system, and argue that this automated system can act as a low-cost proxy for a human evaluation during the development stages of a summarization system.</description><subject>Computational modeling</subject><subject>Context</subject><subject>Document Summarization</subject><subject>Error analysis</subject><subject>Humans</subject><subject>Probabilistic logic</subject><subject>Speech</subject><subject>Topic Modeling</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AQhtcTWGueoDf7Aol7PlxK8QQFhVbwrmw2E1xJk5hNivr0LrbOzcD83z_MPwgtKCkoJfbmaXm7Xr8UjFBWKGYsUfQEZVYbKpTmhAhlT9GMcW1zasnbGbr6F6Q4RzMqGckVFfYSZTF-kFTJSriaoWbT9cHjUEE7hjp4N4auxaWLUGH4GofQxiTD3jXTQepqHKfdzg3h5zAYwb-34XOCiF3fNyEZxw77rt3DEP8Q1-DYQ8Ku0UXtmgjZsc_R6_3dZvmYr54fUsRVHhgjY64N18Y6xYSVjElBRVnV2viUiQjLlJDSCwq1KcErEGXJnOKVhERyTQznc7Q47A0AsO2HkM793h4fx38B-DFfkQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Harwath, D.</creator><creator>Hazen, T. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Topic identification based extrinsic evaluation of summarization techniques applied to conversational speech</title><author>Harwath, D. ; Hazen, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-783789a62495225414bdf78c14604926455c41ef8bec6e4bb2a63d5e541370833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Context</topic><topic>Document Summarization</topic><topic>Error analysis</topic><topic>Humans</topic><topic>Probabilistic logic</topic><topic>Speech</topic><topic>Topic Modeling</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Harwath, D.</creatorcontrib><creatorcontrib>Hazen, T. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harwath, D.</au><au>Hazen, T. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Topic identification based extrinsic evaluation of summarization techniques applied to conversational speech</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>5073</spage><epage>5076</epage><pages>5073-5076</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>Document summarization algorithms are most commonly evaluated according to the intrinsic quality of the summaries they produce. An alternate approach is to examine the extrinsic utility of a summary, measured by the ability of the summary to aid a human in the completion of a specific task. In this paper, we use topic identification as a proxy for relevancy determination in the context of an information retrieval task, and a summary is deemed effective if it enables a user to determine the topical content of a retrieved document. We utilize Amazon's Mechanical Turk service to perform a large-scale human study contrasting four different summarization systems applied to conversational speech from the Fisher Corpus. We show that these results appear to be correlated with the performance of an automated topic identification system, and argue that this automated system can act as a low-cost proxy for a human evaluation during the development stages of a summarization system.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6289061</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.5073-5076
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6289061
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Context
Document Summarization
Error analysis
Humans
Probabilistic logic
Speech
Topic Modeling
Vectors
title Topic identification based extrinsic evaluation of summarization techniques applied to conversational speech
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Topic%20identification%20based%20extrinsic%20evaluation%20of%20summarization%20techniques%20applied%20to%20conversational%20speech&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Harwath,%20D.&rft.date=2012-01-01&rft.spage=5073&rft.epage=5076&rft.pages=5073-5076&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6289061&rft_dat=%3Cieee_6IE%3E6289061%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6289061&rfr_iscdi=true