Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition

This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chanwoo Kim, Stern, R. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4104
container_issue
container_start_page 4101
container_title
container_volume
creator Chanwoo Kim
Stern, R. M.
description This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.
doi_str_mv 10.1109/ICASSP.2012.6288820
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288820</ieee_id><sourcerecordid>6288820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i286t-4e6106513c7e7c4638ed9bc3c72fc3e0755a4c5cc22eded4bd97b91dbaf613ac3</originalsourceid><addsrcrecordid>eNo1UEtLxDAYjC-wrv0Fe8lRD615NWmOUnzhshZWwduSpl810m1KUhH99RZc5zIMwwzMILSkJKeU6KuH6nqzqXNGKMslK8uSkQOUalVSIRUnREh9iBLGlc6oJq9H6OzfKMQxSmjBSCap0KcojfGDzJijhMsEPdb-C0K29mFnevcDLa5gjFMwPa48dJ2zDoYp4ot6XVWXuPMBB998xgnHEcC-4wDWvw1ucn44Ryed6SOke16gl9ub5-o-Wz3dzQtWmWOlnDIBkhJZUG4VKCskL6HVjZ0l6ywHoorCCFtYyxi00Iqm1arRtG1MJyk3li_Q8q_XAcB2DG5nwvd2_wv_Bbd6U2I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chanwoo Kim ; Stern, R. M.</creator><creatorcontrib>Chanwoo Kim ; Stern, R. M.</creatorcontrib><description>This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; asymmetric filtering ; feature extraction ; medium-time power estimation ; Mel frequency cepstral coefficient ; modulation filtering ; Noise ; on-line speech processing ; physiological modeling ; rate-level curve ; Reverberation ; Robust speech recognition ; Speech ; Speech processing ; Speech recognition ; temporal masking</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.4101-4104</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chanwoo Kim</creatorcontrib><creatorcontrib>Stern, R. M.</creatorcontrib><title>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.</description><subject>Accuracy</subject><subject>asymmetric filtering</subject><subject>feature extraction</subject><subject>medium-time power estimation</subject><subject>Mel frequency cepstral coefficient</subject><subject>modulation filtering</subject><subject>Noise</subject><subject>on-line speech processing</subject><subject>physiological modeling</subject><subject>rate-level curve</subject><subject>Reverberation</subject><subject>Robust speech recognition</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>temporal masking</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtLxDAYjC-wrv0Fe8lRD615NWmOUnzhshZWwduSpl810m1KUhH99RZc5zIMwwzMILSkJKeU6KuH6nqzqXNGKMslK8uSkQOUalVSIRUnREh9iBLGlc6oJq9H6OzfKMQxSmjBSCap0KcojfGDzJijhMsEPdb-C0K29mFnevcDLa5gjFMwPa48dJ2zDoYp4ot6XVWXuPMBB998xgnHEcC-4wDWvw1ucn44Ryed6SOke16gl9ub5-o-Wz3dzQtWmWOlnDIBkhJZUG4VKCskL6HVjZ0l6ywHoorCCFtYyxi00Iqm1arRtG1MJyk3li_Q8q_XAcB2DG5nwvd2_wv_Bbd6U2I</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Chanwoo Kim</creator><creator>Stern, R. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</title><author>Chanwoo Kim ; Stern, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i286t-4e6106513c7e7c4638ed9bc3c72fc3e0755a4c5cc22eded4bd97b91dbaf613ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>asymmetric filtering</topic><topic>feature extraction</topic><topic>medium-time power estimation</topic><topic>Mel frequency cepstral coefficient</topic><topic>modulation filtering</topic><topic>Noise</topic><topic>on-line speech processing</topic><topic>physiological modeling</topic><topic>rate-level curve</topic><topic>Reverberation</topic><topic>Robust speech recognition</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>temporal masking</topic><toplevel>online_resources</toplevel><creatorcontrib>Chanwoo Kim</creatorcontrib><creatorcontrib>Stern, R. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chanwoo Kim</au><au>Stern, R. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>4101</spage><epage>4104</epage><pages>4101-4104</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288820</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.4101-4104
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288820
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
asymmetric filtering
feature extraction
medium-time power estimation
Mel frequency cepstral coefficient
modulation filtering
Noise
on-line speech processing
physiological modeling
rate-level curve
Reverberation
Robust speech recognition
Speech
Speech processing
Speech recognition
temporal masking
title Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power-Normalized%20Cepstral%20Coefficients%20(PNCC)%20for%20robust%20speech%20recognition&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Chanwoo%20Kim&rft.date=2012-03&rft.spage=4101&rft.epage=4104&rft.pages=4101-4104&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288820&rft_dat=%3Cieee_6IE%3E6288820%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288820&rfr_iscdi=true