Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition
This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4104 |
---|---|
container_issue | |
container_start_page | 4101 |
container_title | |
container_volume | |
creator | Chanwoo Kim Stern, R. M. |
description | This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input. |
doi_str_mv | 10.1109/ICASSP.2012.6288820 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288820</ieee_id><sourcerecordid>6288820</sourcerecordid><originalsourceid>FETCH-LOGICAL-i286t-4e6106513c7e7c4638ed9bc3c72fc3e0755a4c5cc22eded4bd97b91dbaf613ac3</originalsourceid><addsrcrecordid>eNo1UEtLxDAYjC-wrv0Fe8lRD615NWmOUnzhshZWwduSpl810m1KUhH99RZc5zIMwwzMILSkJKeU6KuH6nqzqXNGKMslK8uSkQOUalVSIRUnREh9iBLGlc6oJq9H6OzfKMQxSmjBSCap0KcojfGDzJijhMsEPdb-C0K29mFnevcDLa5gjFMwPa48dJ2zDoYp4ot6XVWXuPMBB998xgnHEcC-4wDWvw1ucn44Ryed6SOke16gl9ub5-o-Wz3dzQtWmWOlnDIBkhJZUG4VKCskL6HVjZ0l6ywHoorCCFtYyxi00Iqm1arRtG1MJyk3li_Q8q_XAcB2DG5nwvd2_wv_Bbd6U2I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chanwoo Kim ; Stern, R. M.</creator><creatorcontrib>Chanwoo Kim ; Stern, R. M.</creatorcontrib><description>This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288820</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; asymmetric filtering ; feature extraction ; medium-time power estimation ; Mel frequency cepstral coefficient ; modulation filtering ; Noise ; on-line speech processing ; physiological modeling ; rate-level curve ; Reverberation ; Robust speech recognition ; Speech ; Speech processing ; Speech recognition ; temporal masking</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.4101-4104</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chanwoo Kim</creatorcontrib><creatorcontrib>Stern, R. M.</creatorcontrib><title>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.</description><subject>Accuracy</subject><subject>asymmetric filtering</subject><subject>feature extraction</subject><subject>medium-time power estimation</subject><subject>Mel frequency cepstral coefficient</subject><subject>modulation filtering</subject><subject>Noise</subject><subject>on-line speech processing</subject><subject>physiological modeling</subject><subject>rate-level curve</subject><subject>Reverberation</subject><subject>Robust speech recognition</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>temporal masking</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtLxDAYjC-wrv0Fe8lRD615NWmOUnzhshZWwduSpl810m1KUhH99RZc5zIMwwzMILSkJKeU6KuH6nqzqXNGKMslK8uSkQOUalVSIRUnREh9iBLGlc6oJq9H6OzfKMQxSmjBSCap0KcojfGDzJijhMsEPdb-C0K29mFnevcDLa5gjFMwPa48dJ2zDoYp4ot6XVWXuPMBB998xgnHEcC-4wDWvw1ucn44Ryed6SOke16gl9ub5-o-Wz3dzQtWmWOlnDIBkhJZUG4VKCskL6HVjZ0l6ywHoorCCFtYyxi00Iqm1arRtG1MJyk3li_Q8q_XAcB2DG5nwvd2_wv_Bbd6U2I</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Chanwoo Kim</creator><creator>Stern, R. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</title><author>Chanwoo Kim ; Stern, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i286t-4e6106513c7e7c4638ed9bc3c72fc3e0755a4c5cc22eded4bd97b91dbaf613ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>asymmetric filtering</topic><topic>feature extraction</topic><topic>medium-time power estimation</topic><topic>Mel frequency cepstral coefficient</topic><topic>modulation filtering</topic><topic>Noise</topic><topic>on-line speech processing</topic><topic>physiological modeling</topic><topic>rate-level curve</topic><topic>Reverberation</topic><topic>Robust speech recognition</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>temporal masking</topic><toplevel>online_resources</toplevel><creatorcontrib>Chanwoo Kim</creatorcontrib><creatorcontrib>Stern, R. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chanwoo Kim</au><au>Stern, R. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>4101</spage><epage>4104</epage><pages>4101-4104</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>This paper presents a new feature extraction algorithm called Power Normalized Cepstral Coefficients (PNCC) that is based on auditory processing. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, a noise-suppression algorithm based on asymmetric filtering that suppress background excitation, and a module that accomplishes temporal masking. We also propose the use of medium-time power analysis, in which environmental parameters are estimated over a longer duration than is commonly used for speech, as well as frequency smoothing. Experimental results demonstrate that PNCC processing provides substantial improvements in recognition accuracy compared to MFCC and PLP processing for speech in the presence of various types of additive noise and in reverberant environments, with only slightly greater computational cost than conventional MFCC processing, and without degrading the recognition accuracy that is observed while training and testing using clean speech. PNCC processing also provides better recognition accuracy in noisy environments than techniques such as Vector Taylor Series (VTS) and the ETSI Advanced Front End (AFE) while requiring much less computation. We describe an implementation of PNCC using "on-line processing" that does not require future knowledge of the input.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288820</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.4101-4104 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6288820 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy asymmetric filtering feature extraction medium-time power estimation Mel frequency cepstral coefficient modulation filtering Noise on-line speech processing physiological modeling rate-level curve Reverberation Robust speech recognition Speech Speech processing Speech recognition temporal masking |
title | Power-Normalized Cepstral Coefficients (PNCC) for robust speech recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power-Normalized%20Cepstral%20Coefficients%20(PNCC)%20for%20robust%20speech%20recognition&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Chanwoo%20Kim&rft.date=2012-03&rft.spage=4101&rft.epage=4104&rft.pages=4101-4104&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288820&rft_dat=%3Cieee_6IE%3E6288820%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288820&rfr_iscdi=true |