Community-driven hierarchical fusion of numerous classifiers: Application to video semantic indexing

We deal with the issue of combining dozens of classifiers into a better one. Our first contribution is the introduction of the notion of communities of classifiers. We build a complete graph with one node per classifier and edges weighted by a measure of similarity between connected classifiers. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bredin, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2332
container_issue
container_start_page 2329
container_title
container_volume
creator Bredin, H.
description We deal with the issue of combining dozens of classifiers into a better one. Our first contribution is the introduction of the notion of communities of classifiers. We build a complete graph with one node per classifier and edges weighted by a measure of similarity between connected classifiers. The resulting community structure is uncovered from this graph using the state-of-the-art Louvain algorithm. Our second contribution is a hierarchical fusion approach driven by these communities. First, intra-community fusion results in one classifier per community. Then, inter-community fusion takes advantage of their complementarity to achieve much better classification performance. Application to the combination of 90 classifiers in the framework of TRECVid 2010 Semantic Indexing task shows a 30% increase in performance relative to a baseline flat fusion.
doi_str_mv 10.1109/ICASSP.2012.6288381
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288381</ieee_id><sourcerecordid>6288381</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-33febc22500cb14b1abd6d249f5fdaa4ac2589d3524a7ea43b5c3a5a21529ac73</originalsourceid><addsrcrecordid>eNo1kNtKw0AQhtcTWGufoDf7Aql7TLLeleIJCgpV8K5M9mBHkk3JJmLf3oh1buZivn_g-wmZc7bgnJmbp9Vys3lZCMbFIhdlKUt-QmamKLnKC8mYys0pmQhZmIwb9n5Grv4PWp2TCdeCZTlX5pLMUvpk44xRJvMJcau2aYaI_SFzHX75SHfoO-jsDi3UNAwJ20jbQOPQ-K4dErU1pIRhpNItXe739Qj2v1Df0i90vqXJNxB7tBSj898YP67JRYA6-dlxT8nb_d3r6jFbPz-MausMeaH7TMrgKyuEZsxWXFUcKpc7oUzQwQEosEKXxkktFBQelKy0laBBjH4GbCGnZP73F733232HDXSH7bEw-QPGOl3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Community-driven hierarchical fusion of numerous classifiers: Application to video semantic indexing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bredin, H.</creator><creatorcontrib>Bredin, H.</creatorcontrib><description>We deal with the issue of combining dozens of classifiers into a better one. Our first contribution is the introduction of the notion of communities of classifiers. We build a complete graph with one node per classifier and edges weighted by a measure of similarity between connected classifiers. The resulting community structure is uncovered from this graph using the state-of-the-art Louvain algorithm. Our second contribution is a hierarchical fusion approach driven by these communities. First, intra-community fusion results in one classifier per community. Then, inter-community fusion takes advantage of their complementarity to achieve much better classification performance. Application to the combination of 90 classifiers in the framework of TRECVid 2010 Semantic Indexing task shows a 30% increase in performance relative to a baseline flat fusion.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288381</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communities ; community detection ; Correlation ; hierarchical fusion ; Image edge detection ; Indexing ; late fusion ; Machine learning algorithms ; semantic indexing ; Semantics</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.2329-2332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bredin, H.</creatorcontrib><title>Community-driven hierarchical fusion of numerous classifiers: Application to video semantic indexing</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>We deal with the issue of combining dozens of classifiers into a better one. Our first contribution is the introduction of the notion of communities of classifiers. We build a complete graph with one node per classifier and edges weighted by a measure of similarity between connected classifiers. The resulting community structure is uncovered from this graph using the state-of-the-art Louvain algorithm. Our second contribution is a hierarchical fusion approach driven by these communities. First, intra-community fusion results in one classifier per community. Then, inter-community fusion takes advantage of their complementarity to achieve much better classification performance. Application to the combination of 90 classifiers in the framework of TRECVid 2010 Semantic Indexing task shows a 30% increase in performance relative to a baseline flat fusion.</description><subject>Communities</subject><subject>community detection</subject><subject>Correlation</subject><subject>hierarchical fusion</subject><subject>Image edge detection</subject><subject>Indexing</subject><subject>late fusion</subject><subject>Machine learning algorithms</subject><subject>semantic indexing</subject><subject>Semantics</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AQhtcTWGufoDf7Aql7TLLeleIJCgpV8K5M9mBHkk3JJmLf3oh1buZivn_g-wmZc7bgnJmbp9Vys3lZCMbFIhdlKUt-QmamKLnKC8mYys0pmQhZmIwb9n5Grv4PWp2TCdeCZTlX5pLMUvpk44xRJvMJcau2aYaI_SFzHX75SHfoO-jsDi3UNAwJ20jbQOPQ-K4dErU1pIRhpNItXe739Qj2v1Df0i90vqXJNxB7tBSj898YP67JRYA6-dlxT8nb_d3r6jFbPz-MausMeaH7TMrgKyuEZsxWXFUcKpc7oUzQwQEosEKXxkktFBQelKy0laBBjH4GbCGnZP73F733232HDXSH7bEw-QPGOl3g</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Bredin, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Community-driven hierarchical fusion of numerous classifiers: Application to video semantic indexing</title><author>Bredin, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-33febc22500cb14b1abd6d249f5fdaa4ac2589d3524a7ea43b5c3a5a21529ac73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Communities</topic><topic>community detection</topic><topic>Correlation</topic><topic>hierarchical fusion</topic><topic>Image edge detection</topic><topic>Indexing</topic><topic>late fusion</topic><topic>Machine learning algorithms</topic><topic>semantic indexing</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bredin, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bredin, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Community-driven hierarchical fusion of numerous classifiers: Application to video semantic indexing</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>2329</spage><epage>2332</epage><pages>2329-2332</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>We deal with the issue of combining dozens of classifiers into a better one. Our first contribution is the introduction of the notion of communities of classifiers. We build a complete graph with one node per classifier and edges weighted by a measure of similarity between connected classifiers. The resulting community structure is uncovered from this graph using the state-of-the-art Louvain algorithm. Our second contribution is a hierarchical fusion approach driven by these communities. First, intra-community fusion results in one classifier per community. Then, inter-community fusion takes advantage of their complementarity to achieve much better classification performance. Application to the combination of 90 classifiers in the framework of TRECVid 2010 Semantic Indexing task shows a 30% increase in performance relative to a baseline flat fusion.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288381</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.2329-2332
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288381
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communities
community detection
Correlation
hierarchical fusion
Image edge detection
Indexing
late fusion
Machine learning algorithms
semantic indexing
Semantics
title Community-driven hierarchical fusion of numerous classifiers: Application to video semantic indexing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Community-driven%20hierarchical%20fusion%20of%20numerous%20classifiers:%20Application%20to%20video%20semantic%20indexing&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Bredin,%20H.&rft.date=2012-03&rft.spage=2329&rft.epage=2332&rft.pages=2329-2332&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288381&rft_dat=%3Cieee_6IE%3E6288381%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288381&rfr_iscdi=true