Anti-sparse coding for approximate nearest neighbor search

This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit recon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jegou, H., Furon, T., Fuchs, J.-J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2032
container_issue
container_start_page 2029
container_title
container_volume
creator Jegou, H.
Furon, T.
Fuchs, J.-J
description This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit reconstruction from the binary representation of the original vector. The paper also shows that random projections which are used in Locality Sensitive Hashing algorithms, are significantly outperformed by regular frames for both synthetic and real data if the number of bits exceeds the vector dimensionality, i.e., when high precision is required.
doi_str_mv 10.1109/ICASSP.2012.6288307
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288307</ieee_id><sourcerecordid>6288307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7877784395d449bf7f5dfcee2b0a4aa770412651121791d88675d4d999d5426b3</originalsourceid><addsrcrecordid>eNo1kN1KxDAQheMfWNc-wd70BVJnkjSTeLcs_sGCwip4t6RNulvRtjS90Lc34Do3H8w5MxwOY0uEEhHszdN6td2-lAJQlFoYI4FOWG7JoNIkAZS2pywTkixHC-9n7OpfqNQ5y7ASwDUqe8nyGD8gTToFqTN2u-rnjsfRTTEUzeC7fl-0w1S4cZyG7-7LzaHog5tCnBO7_aFOYkyL5nDNLlr3GUN-5IK93d-9rh_55vkhBd7wRhDMnAwRGSVt5ZWydUtt5dsmBFGDU84RgUKhK0SBZNEboyk5vbXWV0roWi7Y8u9vF0LYjVMKNf3sjjXIX5nuS9A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Anti-sparse coding for approximate nearest neighbor search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jegou, H. ; Furon, T. ; Fuchs, J.-J</creator><creatorcontrib>Jegou, H. ; Furon, T. ; Fuchs, J.-J</creatorcontrib><description>This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit reconstruction from the binary representation of the original vector. The paper also shows that random projections which are used in Locality Sensitive Hashing algorithms, are significantly outperformed by regular frames for both synthetic and real data if the number of bits exceeds the vector dimensionality, i.e., when high precision is required.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288307</identifier><language>eng</language><publisher>IEEE</publisher><subject>approximate neighbors search ; Approximation methods ; Artificial neural networks ; Encoding ; Hamming embedding ; Indexes ; Search problems ; sparse coding ; spread representations ; Vectors</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.2029-2032</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-7877784395d449bf7f5dfcee2b0a4aa770412651121791d88675d4d999d5426b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jegou, H.</creatorcontrib><creatorcontrib>Furon, T.</creatorcontrib><creatorcontrib>Fuchs, J.-J</creatorcontrib><title>Anti-sparse coding for approximate nearest neighbor search</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit reconstruction from the binary representation of the original vector. The paper also shows that random projections which are used in Locality Sensitive Hashing algorithms, are significantly outperformed by regular frames for both synthetic and real data if the number of bits exceeds the vector dimensionality, i.e., when high precision is required.</description><subject>approximate neighbors search</subject><subject>Approximation methods</subject><subject>Artificial neural networks</subject><subject>Encoding</subject><subject>Hamming embedding</subject><subject>Indexes</subject><subject>Search problems</subject><subject>sparse coding</subject><subject>spread representations</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1KxDAQheMfWNc-wd70BVJnkjSTeLcs_sGCwip4t6RNulvRtjS90Lc34Do3H8w5MxwOY0uEEhHszdN6td2-lAJQlFoYI4FOWG7JoNIkAZS2pywTkixHC-9n7OpfqNQ5y7ASwDUqe8nyGD8gTToFqTN2u-rnjsfRTTEUzeC7fl-0w1S4cZyG7-7LzaHog5tCnBO7_aFOYkyL5nDNLlr3GUN-5IK93d-9rh_55vkhBd7wRhDMnAwRGSVt5ZWydUtt5dsmBFGDU84RgUKhK0SBZNEboyk5vbXWV0roWi7Y8u9vF0LYjVMKNf3sjjXIX5nuS9A</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Jegou, H.</creator><creator>Furon, T.</creator><creator>Fuchs, J.-J</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Anti-sparse coding for approximate nearest neighbor search</title><author>Jegou, H. ; Furon, T. ; Fuchs, J.-J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7877784395d449bf7f5dfcee2b0a4aa770412651121791d88675d4d999d5426b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>approximate neighbors search</topic><topic>Approximation methods</topic><topic>Artificial neural networks</topic><topic>Encoding</topic><topic>Hamming embedding</topic><topic>Indexes</topic><topic>Search problems</topic><topic>sparse coding</topic><topic>spread representations</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jegou, H.</creatorcontrib><creatorcontrib>Furon, T.</creatorcontrib><creatorcontrib>Fuchs, J.-J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jegou, H.</au><au>Furon, T.</au><au>Fuchs, J.-J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Anti-sparse coding for approximate nearest neighbor search</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2029</spage><epage>2032</epage><pages>2029-2032</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit reconstruction from the binary representation of the original vector. The paper also shows that random projections which are used in Locality Sensitive Hashing algorithms, are significantly outperformed by regular frames for both synthetic and real data if the number of bits exceeds the vector dimensionality, i.e., when high precision is required.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288307</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.2029-2032
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288307
source IEEE Electronic Library (IEL) Conference Proceedings
subjects approximate neighbors search
Approximation methods
Artificial neural networks
Encoding
Hamming embedding
Indexes
Search problems
sparse coding
spread representations
Vectors
title Anti-sparse coding for approximate nearest neighbor search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Anti-sparse%20coding%20for%20approximate%20nearest%20neighbor%20search&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Jegou,%20H.&rft.date=2012-01-01&rft.spage=2029&rft.epage=2032&rft.pages=2029-2032&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288307&rft_dat=%3Cieee_6IE%3E6288307%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288307&rfr_iscdi=true