Correlation and convolution of image data using fermat number transform based on two's complement

The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rockstroh, L., Klaiber, M., Simon, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1640
container_issue
container_start_page 1637
container_title
container_volume
creator Rockstroh, L.
Klaiber, M.
Simon, S.
description The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.
doi_str_mv 10.1109/ICASSP.2012.6288209
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288209</ieee_id><sourcerecordid>6288209</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8226dd2cd5674d3dd5009f683648f1e1d37c8e94148d8c8160816d80ab93f3bc3</originalsourceid><addsrcrecordid>eNo1UE1LAzEUjF9grf0FveTmaevLx2aToxSrQkGhCt5KdpOUld2kJKnivzdoffAYhmGGNw-hOYEFIaBun5Z3m83LggKhC0GlpKBO0Ew1knDRMAAu1CmaUNaoiih4P0NX_0LNz9GE1BQqQbi6RLOUPqBMsQITE6SXIUY76NwHj7U3uAv-MwyHXx4c7ke9s9jorPEh9X6HnY2jztgfxtZGnKP2yYU44lYna3Ax5a9wk0rMuB_saH2-RhdOD8nOjjhFb6v71-VjtX5-KL3WVU-aOleSUmEM7UwtGm6YMTWAckIywaUjlhjWdNIqTrg0spNEQFkjQbeKOdZ2bIrmf7m9tXa7j-Xy-L09fov9AKvcWvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Correlation and convolution of image data using fermat number transform based on two's complement</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rockstroh, L. ; Klaiber, M. ; Simon, S.</creator><creatorcontrib>Rockstroh, L. ; Klaiber, M. ; Simon, S.</creatorcontrib><description>The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288209</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adders ; Convolution ; Correlation ; Dynamic range ; fermat number transform ; Logic gates ; Transforms ; two's complement</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1637-1640</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rockstroh, L.</creatorcontrib><creatorcontrib>Klaiber, M.</creatorcontrib><creatorcontrib>Simon, S.</creatorcontrib><title>Correlation and convolution of image data using fermat number transform based on two's complement</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.</description><subject>Accuracy</subject><subject>Adders</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Dynamic range</subject><subject>fermat number transform</subject><subject>Logic gates</subject><subject>Transforms</subject><subject>two's complement</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UE1LAzEUjF9grf0FveTmaevLx2aToxSrQkGhCt5KdpOUld2kJKnivzdoffAYhmGGNw-hOYEFIaBun5Z3m83LggKhC0GlpKBO0Ew1knDRMAAu1CmaUNaoiih4P0NX_0LNz9GE1BQqQbi6RLOUPqBMsQITE6SXIUY76NwHj7U3uAv-MwyHXx4c7ke9s9jorPEh9X6HnY2jztgfxtZGnKP2yYU44lYna3Ax5a9wk0rMuB_saH2-RhdOD8nOjjhFb6v71-VjtX5-KL3WVU-aOleSUmEM7UwtGm6YMTWAckIywaUjlhjWdNIqTrg0spNEQFkjQbeKOdZ2bIrmf7m9tXa7j-Xy-L09fov9AKvcWvQ</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Rockstroh, L.</creator><creator>Klaiber, M.</creator><creator>Simon, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Correlation and convolution of image data using fermat number transform based on two's complement</title><author>Rockstroh, L. ; Klaiber, M. ; Simon, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8226dd2cd5674d3dd5009f683648f1e1d37c8e94148d8c8160816d80ab93f3bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Adders</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Dynamic range</topic><topic>fermat number transform</topic><topic>Logic gates</topic><topic>Transforms</topic><topic>two's complement</topic><toplevel>online_resources</toplevel><creatorcontrib>Rockstroh, L.</creatorcontrib><creatorcontrib>Klaiber, M.</creatorcontrib><creatorcontrib>Simon, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rockstroh, L.</au><au>Klaiber, M.</au><au>Simon, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Correlation and convolution of image data using fermat number transform based on two's complement</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>1637</spage><epage>1640</epage><pages>1637-1640</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288209</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1637-1640
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288209
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Adders
Convolution
Correlation
Dynamic range
fermat number transform
Logic gates
Transforms
two's complement
title Correlation and convolution of image data using fermat number transform based on two's complement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Correlation%20and%20convolution%20of%20image%20data%20using%20fermat%20number%20transform%20based%20on%20two's%20complement&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Rockstroh,%20L.&rft.date=2012-03&rft.spage=1637&rft.epage=1640&rft.pages=1637-1640&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288209&rft_dat=%3Cieee_6IE%3E6288209%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288209&rfr_iscdi=true