Correlation and convolution of image data using fermat number transform based on two's complement
The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynami...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1640 |
---|---|
container_issue | |
container_start_page | 1637 |
container_title | |
container_volume | |
creator | Rockstroh, L. Klaiber, M. Simon, S. |
description | The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach. |
doi_str_mv | 10.1109/ICASSP.2012.6288209 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288209</ieee_id><sourcerecordid>6288209</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8226dd2cd5674d3dd5009f683648f1e1d37c8e94148d8c8160816d80ab93f3bc3</originalsourceid><addsrcrecordid>eNo1UE1LAzEUjF9grf0FveTmaevLx2aToxSrQkGhCt5KdpOUld2kJKnivzdoffAYhmGGNw-hOYEFIaBun5Z3m83LggKhC0GlpKBO0Ew1knDRMAAu1CmaUNaoiih4P0NX_0LNz9GE1BQqQbi6RLOUPqBMsQITE6SXIUY76NwHj7U3uAv-MwyHXx4c7ke9s9jorPEh9X6HnY2jztgfxtZGnKP2yYU44lYna3Ax5a9wk0rMuB_saH2-RhdOD8nOjjhFb6v71-VjtX5-KL3WVU-aOleSUmEM7UwtGm6YMTWAckIywaUjlhjWdNIqTrg0spNEQFkjQbeKOdZ2bIrmf7m9tXa7j-Xy-L09fov9AKvcWvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Correlation and convolution of image data using fermat number transform based on two's complement</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rockstroh, L. ; Klaiber, M. ; Simon, S.</creator><creatorcontrib>Rockstroh, L. ; Klaiber, M. ; Simon, S.</creatorcontrib><description>The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288209</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adders ; Convolution ; Correlation ; Dynamic range ; fermat number transform ; Logic gates ; Transforms ; two's complement</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1637-1640</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rockstroh, L.</creatorcontrib><creatorcontrib>Klaiber, M.</creatorcontrib><creatorcontrib>Simon, S.</creatorcontrib><title>Correlation and convolution of image data using fermat number transform based on two's complement</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.</description><subject>Accuracy</subject><subject>Adders</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Dynamic range</subject><subject>fermat number transform</subject><subject>Logic gates</subject><subject>Transforms</subject><subject>two's complement</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UE1LAzEUjF9grf0FveTmaevLx2aToxSrQkGhCt5KdpOUld2kJKnivzdoffAYhmGGNw-hOYEFIaBun5Z3m83LggKhC0GlpKBO0Ew1knDRMAAu1CmaUNaoiih4P0NX_0LNz9GE1BQqQbi6RLOUPqBMsQITE6SXIUY76NwHj7U3uAv-MwyHXx4c7ke9s9jorPEh9X6HnY2jztgfxtZGnKP2yYU44lYna3Ax5a9wk0rMuB_saH2-RhdOD8nOjjhFb6v71-VjtX5-KL3WVU-aOleSUmEM7UwtGm6YMTWAckIywaUjlhjWdNIqTrg0spNEQFkjQbeKOdZ2bIrmf7m9tXa7j-Xy-L09fov9AKvcWvQ</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Rockstroh, L.</creator><creator>Klaiber, M.</creator><creator>Simon, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Correlation and convolution of image data using fermat number transform based on two's complement</title><author>Rockstroh, L. ; Klaiber, M. ; Simon, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8226dd2cd5674d3dd5009f683648f1e1d37c8e94148d8c8160816d80ab93f3bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Adders</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Dynamic range</topic><topic>fermat number transform</topic><topic>Logic gates</topic><topic>Transforms</topic><topic>two's complement</topic><toplevel>online_resources</toplevel><creatorcontrib>Rockstroh, L.</creatorcontrib><creatorcontrib>Klaiber, M.</creatorcontrib><creatorcontrib>Simon, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rockstroh, L.</au><au>Klaiber, M.</au><au>Simon, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Correlation and convolution of image data using fermat number transform based on two's complement</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>1637</spage><epage>1640</epage><pages>1637-1640</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>The fast fermat number transform (FNT) enables fast correlation and fast convolution similar to fast correlation based on fast fourier transform (FFT). In contrast to fixed-point FFT with dynamic scaling, FNT is based on integer operations, which are free of rounding error, and maintains full dynamic range for convolution and correlation. In this paper, a technique to calculate FNT based on two's complement (TFNT) is presented and the correctness of the technique is proven. The TFNT is data flow driven without conditional assignments, which enables high performance pipelined implementations on digital signal processors and field programmable gate arrays. By taking the example of 2D correlation and based on a Radix-4 algorithm, it is shown that TFNT requires less operations than fixed-point FFT as well as less operations than FNT based on the previously presented diminished-1 approach.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288209</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1637-1640 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6288209 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Adders Convolution Correlation Dynamic range fermat number transform Logic gates Transforms two's complement |
title | Correlation and convolution of image data using fermat number transform based on two's complement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Correlation%20and%20convolution%20of%20image%20data%20using%20fermat%20number%20transform%20based%20on%20two's%20complement&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Rockstroh,%20L.&rft.date=2012-03&rft.spage=1637&rft.epage=1640&rft.pages=1637-1640&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288209&rft_dat=%3Cieee_6IE%3E6288209%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288209&rfr_iscdi=true |