Fast algorithms for robust hyperspectral endmember extraction based on worst-case simplex volume maximization

Hyperspectral endmember extraction (EE) is to estimate endmember signatures (or material spectra) from the hyperspectral data of an unexplored area for analyzing the materials and their composition therein. However, the presence of noise in the data posts a serious problem for EE. Recently, robustne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsung-Han Chan, Ji-Yuan Liou, Ambikapathi, A., Wing-Kin Ma, Chong-Yung Chi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1240
container_issue
container_start_page 1237
container_title
container_volume
creator Tsung-Han Chan
Ji-Yuan Liou
Ambikapathi, A.
Wing-Kin Ma
Chong-Yung Chi
description Hyperspectral endmember extraction (EE) is to estimate endmember signatures (or material spectra) from the hyperspectral data of an unexplored area for analyzing the materials and their composition therein. However, the presence of noise in the data posts a serious problem for EE. Recently, robustness against noise has been taken into account in the design of EE algorithms. The robust maximum-volume simplex criterion [1] has been shown to yield performance improvement in the noisy scenario, but its real applicability is limited by its high implementation complexity. In this paper, we propose two fast algorithms to approximate this robust criterion [1], which turns out to deal with a set of partial max-min optimization problems in alternating manner and successive manner, respectively. Some Monte Carlo simulations demonstrate the superior computational efficiency and efficacy of the proposed robust algorithms in the noisy scenario over the robust algorithm in [1] and some benchmark EE algorithms.
doi_str_mv 10.1109/ICASSP.2012.6288112
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288112</ieee_id><sourcerecordid>6288112</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cb37531053d3f0b1060f7d7d00183c727419e7e53f90338edb8ba0bd304a19ad3</originalsourceid><addsrcrecordid>eNo1UF1PwzAMDF8SY-wX7CV_oMNu2qZ5RBMDpEkgDSTepqRxWVCzVkkHG7-eIoZfzr7znWQzNkWYIYK6eZzfrlbPsxQwnRVpWSKmJ2yiZIlZIQVAVqhTNkqFVAkqeDtjV_9Cnp2zEeYpJAVm6pJNYvyAoQYriGLE_ELHnuvmvQ2u3_jI6zbw0JrdwG4OHYXYUdUH3XDaWk_eUOC0H4iqd-2WGx3J8qH5akPsk2oYeXS-a2jPP9tm54l7vXfefevf_Wt2Uesm0uSIY_a6uHuZPyTLp_vhxmXiUOZDjBEyFwi5sKIGg1BALa20AFiKSqYyQ0WSclErEKIka0qjwVgBmUalrRiz6V-uI6J1F5zX4bA-fk78AHYiYJc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast algorithms for robust hyperspectral endmember extraction based on worst-case simplex volume maximization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsung-Han Chan ; Ji-Yuan Liou ; Ambikapathi, A. ; Wing-Kin Ma ; Chong-Yung Chi</creator><creatorcontrib>Tsung-Han Chan ; Ji-Yuan Liou ; Ambikapathi, A. ; Wing-Kin Ma ; Chong-Yung Chi</creatorcontrib><description>Hyperspectral endmember extraction (EE) is to estimate endmember signatures (or material spectra) from the hyperspectral data of an unexplored area for analyzing the materials and their composition therein. However, the presence of noise in the data posts a serious problem for EE. Recently, robustness against noise has been taken into account in the design of EE algorithms. The robust maximum-volume simplex criterion [1] has been shown to yield performance improvement in the noisy scenario, but its real applicability is limited by its high implementation complexity. In this paper, we propose two fast algorithms to approximate this robust criterion [1], which turns out to deal with a set of partial max-min optimization problems in alternating manner and successive manner, respectively. Some Monte Carlo simulations demonstrate the superior computational efficiency and efficacy of the proposed robust algorithms in the noisy scenario over the robust algorithm in [1] and some benchmark EE algorithms.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288112</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Fast algorithms ; Hyperspectral images ; Hyperspectral imaging ; Noise ; Noise measurement ; Optimization ; Robust endmember extraction ; Robustness ; Simplex volume maximization ; Vectors</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1237-1240</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288112$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288112$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsung-Han Chan</creatorcontrib><creatorcontrib>Ji-Yuan Liou</creatorcontrib><creatorcontrib>Ambikapathi, A.</creatorcontrib><creatorcontrib>Wing-Kin Ma</creatorcontrib><creatorcontrib>Chong-Yung Chi</creatorcontrib><title>Fast algorithms for robust hyperspectral endmember extraction based on worst-case simplex volume maximization</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Hyperspectral endmember extraction (EE) is to estimate endmember signatures (or material spectra) from the hyperspectral data of an unexplored area for analyzing the materials and their composition therein. However, the presence of noise in the data posts a serious problem for EE. Recently, robustness against noise has been taken into account in the design of EE algorithms. The robust maximum-volume simplex criterion [1] has been shown to yield performance improvement in the noisy scenario, but its real applicability is limited by its high implementation complexity. In this paper, we propose two fast algorithms to approximate this robust criterion [1], which turns out to deal with a set of partial max-min optimization problems in alternating manner and successive manner, respectively. Some Monte Carlo simulations demonstrate the superior computational efficiency and efficacy of the proposed robust algorithms in the noisy scenario over the robust algorithm in [1] and some benchmark EE algorithms.</description><subject>Approximation algorithms</subject><subject>Fast algorithms</subject><subject>Hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Robust endmember extraction</subject><subject>Robustness</subject><subject>Simplex volume maximization</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF1PwzAMDF8SY-wX7CV_oMNu2qZ5RBMDpEkgDSTepqRxWVCzVkkHG7-eIoZfzr7znWQzNkWYIYK6eZzfrlbPsxQwnRVpWSKmJ2yiZIlZIQVAVqhTNkqFVAkqeDtjV_9Cnp2zEeYpJAVm6pJNYvyAoQYriGLE_ELHnuvmvQ2u3_jI6zbw0JrdwG4OHYXYUdUH3XDaWk_eUOC0H4iqd-2WGx3J8qH5akPsk2oYeXS-a2jPP9tm54l7vXfefevf_Wt2Uesm0uSIY_a6uHuZPyTLp_vhxmXiUOZDjBEyFwi5sKIGg1BALa20AFiKSqYyQ0WSclErEKIka0qjwVgBmUalrRiz6V-uI6J1F5zX4bA-fk78AHYiYJc</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Tsung-Han Chan</creator><creator>Ji-Yuan Liou</creator><creator>Ambikapathi, A.</creator><creator>Wing-Kin Ma</creator><creator>Chong-Yung Chi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Fast algorithms for robust hyperspectral endmember extraction based on worst-case simplex volume maximization</title><author>Tsung-Han Chan ; Ji-Yuan Liou ; Ambikapathi, A. ; Wing-Kin Ma ; Chong-Yung Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cb37531053d3f0b1060f7d7d00183c727419e7e53f90338edb8ba0bd304a19ad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation algorithms</topic><topic>Fast algorithms</topic><topic>Hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Robust endmember extraction</topic><topic>Robustness</topic><topic>Simplex volume maximization</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsung-Han Chan</creatorcontrib><creatorcontrib>Ji-Yuan Liou</creatorcontrib><creatorcontrib>Ambikapathi, A.</creatorcontrib><creatorcontrib>Wing-Kin Ma</creatorcontrib><creatorcontrib>Chong-Yung Chi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsung-Han Chan</au><au>Ji-Yuan Liou</au><au>Ambikapathi, A.</au><au>Wing-Kin Ma</au><au>Chong-Yung Chi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast algorithms for robust hyperspectral endmember extraction based on worst-case simplex volume maximization</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>1237</spage><epage>1240</epage><pages>1237-1240</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>Hyperspectral endmember extraction (EE) is to estimate endmember signatures (or material spectra) from the hyperspectral data of an unexplored area for analyzing the materials and their composition therein. However, the presence of noise in the data posts a serious problem for EE. Recently, robustness against noise has been taken into account in the design of EE algorithms. The robust maximum-volume simplex criterion [1] has been shown to yield performance improvement in the noisy scenario, but its real applicability is limited by its high implementation complexity. In this paper, we propose two fast algorithms to approximate this robust criterion [1], which turns out to deal with a set of partial max-min optimization problems in alternating manner and successive manner, respectively. Some Monte Carlo simulations demonstrate the superior computational efficiency and efficacy of the proposed robust algorithms in the noisy scenario over the robust algorithm in [1] and some benchmark EE algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288112</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1237-1240
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288112
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Fast algorithms
Hyperspectral images
Hyperspectral imaging
Noise
Noise measurement
Optimization
Robust endmember extraction
Robustness
Simplex volume maximization
Vectors
title Fast algorithms for robust hyperspectral endmember extraction based on worst-case simplex volume maximization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20algorithms%20for%20robust%20hyperspectral%20endmember%20extraction%20based%20on%20worst-case%20simplex%20volume%20maximization&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Tsung-Han%20Chan&rft.date=2012-03&rft.spage=1237&rft.epage=1240&rft.pages=1237-1240&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288112&rft_dat=%3Cieee_6IE%3E6288112%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288112&rfr_iscdi=true