A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise

A Poisson-Gaussian model accurately describes the noise present in many imaging systems such as CCD cameras or fluorescence microscopy. However most existing restoration strategies rely on approximations of the Poisson-Gaussian noise statistics. We propose a convex optimization algorithm for the rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jezierska, A., Chouzenoux, E., Pesquet, J.-C, Talbot, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1088
container_issue
container_start_page 1085
container_title
container_volume
creator Jezierska, A.
Chouzenoux, E.
Pesquet, J.-C
Talbot, H.
description A Poisson-Gaussian model accurately describes the noise present in many imaging systems such as CCD cameras or fluorescence microscopy. However most existing restoration strategies rely on approximations of the Poisson-Gaussian noise statistics. We propose a convex optimization algorithm for the reconstruction of signals degraded by a linear operator and corrupted with mixed Poisson-Gaussian noise. The originality of our approach consists of considering the exact continuous-discrete model corresponding to the data statistics. After establishing the Lipschitz differentiability of the Poisson-Gaussian log-likelihood, we derive a primal-dual iterative scheme for minimizing the associated penalized criterion. The proposed method is applicable to a large choice of penalty terms. The robustness of our scheme allows us to handle computational difficulties due to infinite sums arising from the computation of the gradient of the criterion. The proposed approach is validated on image restoration examples.
doi_str_mv 10.1109/ICASSP.2012.6288075
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6288075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6288075</ieee_id><sourcerecordid>oai_HAL_hal_00687634v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h254t-2382b9a94c777e397259bf5462acd6ef54ac4c18ed352d1e920a9a68de6f8f5f3</originalsourceid><addsrcrecordid>eNo9kMlOw0AMhodNopQ-QS9z5TBl9uVYIaBIlUAqSNwiN5k0g0ISZVKWt2dKC77Y_vzb0m-EpozOGKPu-uFmvlo9zThlfKa5tdSoIzRxxjKpjaBUaneMRlwYR5ijryfo4m-g5CkaMcUp0Uy6czSJ8Y2mSKtU6BFaz3HXh3eoSbGFOtXt167DsavDMIRmg6FLEPIKl22Pex-Htt_hAgbAedv3227wBf4MQ4W7NsTYNmQD2xgDNLhJwF-isxLq6CeHPEYvd7fPNwuyfLxPxpak4koOhAvL1w6czI0xXjjDlVuXSmoOeaF9qiCXObO-EIoXzDtOwYG2hdelLVUpxuhqf7eCOvs11X9nLYRsMV9mO0aptkYL-cGSdrrXBu_9v_jwWvED0VlqXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jezierska, A. ; Chouzenoux, E. ; Pesquet, J.-C ; Talbot, H.</creator><creatorcontrib>Jezierska, A. ; Chouzenoux, E. ; Pesquet, J.-C ; Talbot, H.</creatorcontrib><description>A Poisson-Gaussian model accurately describes the noise present in many imaging systems such as CCD cameras or fluorescence microscopy. However most existing restoration strategies rely on approximations of the Poisson-Gaussian noise statistics. We propose a convex optimization algorithm for the reconstruction of signals degraded by a linear operator and corrupted with mixed Poisson-Gaussian noise. The originality of our approach consists of considering the exact continuous-discrete model corresponding to the data statistics. After establishing the Lipschitz differentiability of the Poisson-Gaussian log-likelihood, we derive a primal-dual iterative scheme for minimizing the associated penalized criterion. The proposed method is applicable to a large choice of penalty terms. The robustness of our scheme allows us to handle computational difficulties due to infinite sums arising from the computation of the gradient of the criterion. The proposed approach is validated on image restoration examples.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6288075</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer Science ; Convex functions ; convex optimization ; deconvolution ; denoising ; Engineering Sciences ; Image reconstruction ; Image restoration ; Imaging ; Inverse problems ; Noise ; Noise reduction ; Signal and Image processing</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1085-1088</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2179-3498 ; 0000-0003-3631-6093 ; 0000-0002-5943-8061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6288075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6288075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00687634$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jezierska, A.</creatorcontrib><creatorcontrib>Chouzenoux, E.</creatorcontrib><creatorcontrib>Pesquet, J.-C</creatorcontrib><creatorcontrib>Talbot, H.</creatorcontrib><title>A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>A Poisson-Gaussian model accurately describes the noise present in many imaging systems such as CCD cameras or fluorescence microscopy. However most existing restoration strategies rely on approximations of the Poisson-Gaussian noise statistics. We propose a convex optimization algorithm for the reconstruction of signals degraded by a linear operator and corrupted with mixed Poisson-Gaussian noise. The originality of our approach consists of considering the exact continuous-discrete model corresponding to the data statistics. After establishing the Lipschitz differentiability of the Poisson-Gaussian log-likelihood, we derive a primal-dual iterative scheme for minimizing the associated penalized criterion. The proposed method is applicable to a large choice of penalty terms. The robustness of our scheme allows us to handle computational difficulties due to infinite sums arising from the computation of the gradient of the criterion. The proposed approach is validated on image restoration examples.</description><subject>Computer Science</subject><subject>Convex functions</subject><subject>convex optimization</subject><subject>deconvolution</subject><subject>denoising</subject><subject>Engineering Sciences</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Signal and Image processing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMlOw0AMhodNopQ-QS9z5TBl9uVYIaBIlUAqSNwiN5k0g0ISZVKWt2dKC77Y_vzb0m-EpozOGKPu-uFmvlo9zThlfKa5tdSoIzRxxjKpjaBUaneMRlwYR5ijryfo4m-g5CkaMcUp0Uy6czSJ8Y2mSKtU6BFaz3HXh3eoSbGFOtXt167DsavDMIRmg6FLEPIKl22Pex-Htt_hAgbAedv3227wBf4MQ4W7NsTYNmQD2xgDNLhJwF-isxLq6CeHPEYvd7fPNwuyfLxPxpak4koOhAvL1w6czI0xXjjDlVuXSmoOeaF9qiCXObO-EIoXzDtOwYG2hdelLVUpxuhqf7eCOvs11X9nLYRsMV9mO0aptkYL-cGSdrrXBu_9v_jwWvED0VlqXQ</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Jezierska, A.</creator><creator>Chouzenoux, E.</creator><creator>Pesquet, J.-C</creator><creator>Talbot, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2179-3498</orcidid><orcidid>https://orcid.org/0000-0003-3631-6093</orcidid><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid></search><sort><creationdate>201203</creationdate><title>A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise</title><author>Jezierska, A. ; Chouzenoux, E. ; Pesquet, J.-C ; Talbot, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h254t-2382b9a94c777e397259bf5462acd6ef54ac4c18ed352d1e920a9a68de6f8f5f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer Science</topic><topic>Convex functions</topic><topic>convex optimization</topic><topic>deconvolution</topic><topic>denoising</topic><topic>Engineering Sciences</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Signal and Image processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jezierska, A.</creatorcontrib><creatorcontrib>Chouzenoux, E.</creatorcontrib><creatorcontrib>Pesquet, J.-C</creatorcontrib><creatorcontrib>Talbot, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jezierska, A.</au><au>Chouzenoux, E.</au><au>Pesquet, J.-C</au><au>Talbot, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>1085</spage><epage>1088</epage><pages>1085-1088</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>A Poisson-Gaussian model accurately describes the noise present in many imaging systems such as CCD cameras or fluorescence microscopy. However most existing restoration strategies rely on approximations of the Poisson-Gaussian noise statistics. We propose a convex optimization algorithm for the reconstruction of signals degraded by a linear operator and corrupted with mixed Poisson-Gaussian noise. The originality of our approach consists of considering the exact continuous-discrete model corresponding to the data statistics. After establishing the Lipschitz differentiability of the Poisson-Gaussian log-likelihood, we derive a primal-dual iterative scheme for minimizing the associated penalized criterion. The proposed method is applicable to a large choice of penalty terms. The robustness of our scheme allows us to handle computational difficulties due to infinite sums arising from the computation of the gradient of the criterion. The proposed approach is validated on image restoration examples.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6288075</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2179-3498</orcidid><orcidid>https://orcid.org/0000-0003-3631-6093</orcidid><orcidid>https://orcid.org/0000-0002-5943-8061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.1085-1088
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6288075
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer Science
Convex functions
convex optimization
deconvolution
denoising
Engineering Sciences
Image reconstruction
Image restoration
Imaging
Inverse problems
Noise
Noise reduction
Signal and Image processing
title A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20primal-dual%20proximal%20splitting%20approach%20for%20restoring%20data%20corrupted%20with%20poisson-gaussian%20noise&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Jezierska,%20A.&rft.date=2012-03&rft.spage=1085&rft.epage=1088&rft.pages=1085-1088&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6288075&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00687634v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6288075&rfr_iscdi=true