Sparse representation-based extraction of pulmonary sound components from low-quality auscultation signals

Toward assistance of respiratory system diagnosis, sparse representation of auscultation signals is utilized to extract pulmonary sound components. This signal extraction is a challenging task because the pulmonary sounds such as vesicular sounds and crackles are overlapping each other in the time a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sakai, T., Satomoto, H., Kiyasu, S., Miyahara, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue
container_start_page 509
container_title
container_volume
creator Sakai, T.
Satomoto, H.
Kiyasu, S.
Miyahara, S.
description Toward assistance of respiratory system diagnosis, sparse representation of auscultation signals is utilized to extract pulmonary sound components. This signal extraction is a challenging task because the pulmonary sounds such as vesicular sounds and crackles are overlapping each other in the time and frequency domains, and they are so faint that the quality of recorded signals is quite low in many cases. It is experimentally shown that the pulmonary sound components are successfully extracted from low-quality auscultation signals via the sparse representation. This extraction method is confirmed to be highly robust against random noise and digital quantization.
doi_str_mv 10.1109/ICASSP.2012.6287928
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6287928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6287928</ieee_id><sourcerecordid>6287928</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-7f7159bbb0223cad12677ba3a4ccaac5196248daf6cedc868f8abc916fb5b24a3</originalsourceid><addsrcrecordid>eNo1kFtLAzEQheMNrLW_oC_5A6lJNpvLoxRvUFCogm9lkk1ky-5mTXbR_ntXqvNyYA7fYeYgtGR0xRg1N0_r2-32ZcUp4yvJtTJcn6CFUZoJqQpKhTSnaMYLZQgz9P0MXf0bpThHM1ZySiQT5hItct7TaSaUFnKG9tseUvY4-T757LsBhjp2xEL2FfbfQwL3u8Ax4H5s2thBOuAcx67CLrZ97CYk45Bii5v4RT5HaOrhgGHMbmyOYTjXHx00-RpdhEn84k_n6O3-7nX9SDbPD9ODG1JzwQaigmKlsdZSzgsHFeNSKQsFCOcAXMmM5EJXEKTzldNSBw3WGSaDLS0XUMzR8phbe-93farb6ebdX23FD_FpYYA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparse representation-based extraction of pulmonary sound components from low-quality auscultation signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sakai, T. ; Satomoto, H. ; Kiyasu, S. ; Miyahara, S.</creator><creatorcontrib>Sakai, T. ; Satomoto, H. ; Kiyasu, S. ; Miyahara, S.</creatorcontrib><description>Toward assistance of respiratory system diagnosis, sparse representation of auscultation signals is utilized to extract pulmonary sound components. This signal extraction is a challenging task because the pulmonary sounds such as vesicular sounds and crackles are overlapping each other in the time and frequency domains, and they are so faint that the quality of recorded signals is quite low in many cases. It is experimentally shown that the pulmonary sound components are successfully extracted from low-quality auscultation signals via the sparse representation. This extraction method is confirmed to be highly robust against random noise and digital quantization.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 1467300454</identifier><identifier>ISBN: 9781467300452</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781467300469</identifier><identifier>EISBN: 1467300446</identifier><identifier>EISBN: 9781467300445</identifier><identifier>EISBN: 1467300462</identifier><identifier>DOI: 10.1109/ICASSP.2012.6287928</identifier><language>eng</language><publisher>IEEE</publisher><subject>compressed sensing ; electronic auscultation ; Lungs ; Noise ; Respiratory system diagnosis ; source separation ; Sparse matrices ; Time frequency analysis ; Vectors ; Wavelet domain</subject><ispartof>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.509-512</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6287928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6287928$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sakai, T.</creatorcontrib><creatorcontrib>Satomoto, H.</creatorcontrib><creatorcontrib>Kiyasu, S.</creatorcontrib><creatorcontrib>Miyahara, S.</creatorcontrib><title>Sparse representation-based extraction of pulmonary sound components from low-quality auscultation signals</title><title>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Toward assistance of respiratory system diagnosis, sparse representation of auscultation signals is utilized to extract pulmonary sound components. This signal extraction is a challenging task because the pulmonary sounds such as vesicular sounds and crackles are overlapping each other in the time and frequency domains, and they are so faint that the quality of recorded signals is quite low in many cases. It is experimentally shown that the pulmonary sound components are successfully extracted from low-quality auscultation signals via the sparse representation. This extraction method is confirmed to be highly robust against random noise and digital quantization.</description><subject>compressed sensing</subject><subject>electronic auscultation</subject><subject>Lungs</subject><subject>Noise</subject><subject>Respiratory system diagnosis</subject><subject>source separation</subject><subject>Sparse matrices</subject><subject>Time frequency analysis</subject><subject>Vectors</subject><subject>Wavelet domain</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1467300454</isbn><isbn>9781467300452</isbn><isbn>9781467300469</isbn><isbn>1467300446</isbn><isbn>9781467300445</isbn><isbn>1467300462</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kFtLAzEQheMNrLW_oC_5A6lJNpvLoxRvUFCogm9lkk1ky-5mTXbR_ntXqvNyYA7fYeYgtGR0xRg1N0_r2-32ZcUp4yvJtTJcn6CFUZoJqQpKhTSnaMYLZQgz9P0MXf0bpThHM1ZySiQT5hItct7TaSaUFnKG9tseUvY4-T757LsBhjp2xEL2FfbfQwL3u8Ax4H5s2thBOuAcx67CLrZ97CYk45Bii5v4RT5HaOrhgGHMbmyOYTjXHx00-RpdhEn84k_n6O3-7nX9SDbPD9ODG1JzwQaigmKlsdZSzgsHFeNSKQsFCOcAXMmM5EJXEKTzldNSBw3WGSaDLS0XUMzR8phbe-93farb6ebdX23FD_FpYYA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sakai, T.</creator><creator>Satomoto, H.</creator><creator>Kiyasu, S.</creator><creator>Miyahara, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Sparse representation-based extraction of pulmonary sound components from low-quality auscultation signals</title><author>Sakai, T. ; Satomoto, H. ; Kiyasu, S. ; Miyahara, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-7f7159bbb0223cad12677ba3a4ccaac5196248daf6cedc868f8abc916fb5b24a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>compressed sensing</topic><topic>electronic auscultation</topic><topic>Lungs</topic><topic>Noise</topic><topic>Respiratory system diagnosis</topic><topic>source separation</topic><topic>Sparse matrices</topic><topic>Time frequency analysis</topic><topic>Vectors</topic><topic>Wavelet domain</topic><toplevel>online_resources</toplevel><creatorcontrib>Sakai, T.</creatorcontrib><creatorcontrib>Satomoto, H.</creatorcontrib><creatorcontrib>Kiyasu, S.</creatorcontrib><creatorcontrib>Miyahara, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sakai, T.</au><au>Satomoto, H.</au><au>Kiyasu, S.</au><au>Miyahara, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse representation-based extraction of pulmonary sound components from low-quality auscultation signals</atitle><btitle>2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2012-03</date><risdate>2012</risdate><spage>509</spage><epage>512</epage><pages>509-512</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>1467300454</isbn><isbn>9781467300452</isbn><eisbn>9781467300469</eisbn><eisbn>1467300446</eisbn><eisbn>9781467300445</eisbn><eisbn>1467300462</eisbn><abstract>Toward assistance of respiratory system diagnosis, sparse representation of auscultation signals is utilized to extract pulmonary sound components. This signal extraction is a challenging task because the pulmonary sounds such as vesicular sounds and crackles are overlapping each other in the time and frequency domains, and they are so faint that the quality of recorded signals is quite low in many cases. It is experimentally shown that the pulmonary sound components are successfully extracted from low-quality auscultation signals via the sparse representation. This extraction method is confirmed to be highly robust against random noise and digital quantization.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2012.6287928</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, p.509-512
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6287928
source IEEE Electronic Library (IEL) Conference Proceedings
subjects compressed sensing
electronic auscultation
Lungs
Noise
Respiratory system diagnosis
source separation
Sparse matrices
Time frequency analysis
Vectors
Wavelet domain
title Sparse representation-based extraction of pulmonary sound components from low-quality auscultation signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20representation-based%20extraction%20of%20pulmonary%20sound%20components%20from%20low-quality%20auscultation%20signals&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Sakai,%20T.&rft.date=2012-03&rft.spage=509&rft.epage=512&rft.pages=509-512&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=1467300454&rft.isbn_list=9781467300452&rft_id=info:doi/10.1109/ICASSP.2012.6287928&rft_dat=%3Cieee_6IE%3E6287928%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300469&rft.eisbn_list=1467300446&rft.eisbn_list=9781467300445&rft.eisbn_list=1467300462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6287928&rfr_iscdi=true