Cross-recurrence property of m-sequences
A binary maximal length sequence (m-sequence) of period L = 2 m - 1 can be generated by a binary m-stage linear feedback shift-register (LFSR). Tap connections of the LFSR corresponds to a binary primitive polynomial of degree m. m-sequences enjoy several well-known and unique properties. A new prop...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | |
container_start_page | 851 |
container_title | |
container_volume | |
creator | Hemmati, F. |
description | A binary maximal length sequence (m-sequence) of period L = 2 m - 1 can be generated by a binary m-stage linear feedback shift-register (LFSR). Tap connections of the LFSR corresponds to a binary primitive polynomial of degree m. m-sequences enjoy several well-known and unique properties. A new property for m-sequences, called cross-recurrence property, is presented in this paper and its potential applications are briefly outlined. |
doi_str_mv | 10.1109/ISIT.2012.6284681 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6284681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6284681</ieee_id><sourcerecordid>6284681</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-46345eef58bc8cb8acb69eac83dab6eac6d855280eda0fc5de432f5a5207b683</originalsourceid><addsrcrecordid>eNpNT01Lw0AUXK2CpeYHiJccvWzcj7zdl6MEPwIFD8297G5eIGJN3G0P_femWMG5zDAzDAxjd1IUUorqsdk0baGEVIVRWBqUFyyrLMrSWK3Aor5kSyXBcpTSLv5nKMzVXyYquGFZSh9ihj1VYcke6jimxCOFQ4z0FSif4jhR3B_zsc93PNH34WSnW3bdu89E2ZlXrH15bus3vn5_beqnNR_mvT0vjS6BqAf0AYNHF7ypyAXUnfNmFqZDAIWCOif6AB2VWvXgQAnrDeoVu_-dHYhoO8Vh5-Jxe76tfwDk2kcp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cross-recurrence property of m-sequences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hemmati, F.</creator><creatorcontrib>Hemmati, F.</creatorcontrib><description>A binary maximal length sequence (m-sequence) of period L = 2 m - 1 can be generated by a binary m-stage linear feedback shift-register (LFSR). Tap connections of the LFSR corresponds to a binary primitive polynomial of degree m. m-sequences enjoy several well-known and unique properties. A new property for m-sequences, called cross-recurrence property, is presented in this paper and its potential applications are briefly outlined.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781467325806</identifier><identifier>ISBN: 1467325805</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781467325783</identifier><identifier>EISBN: 1467325791</identifier><identifier>EISBN: 9781467325790</identifier><identifier>EISBN: 1467325783</identifier><identifier>DOI: 10.1109/ISIT.2012.6284681</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clocks ; cross-recurrence ; Delay ; finite fields ; Galois fields ; linear feedback shift-register ; m-sequence ; Polynomials ; polynomials over GF ; Table lookup ; Vectors</subject><ispartof>2012 IEEE International Symposium on Information Theory Proceedings, 2012, p.851-854</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6284681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6284681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hemmati, F.</creatorcontrib><title>Cross-recurrence property of m-sequences</title><title>2012 IEEE International Symposium on Information Theory Proceedings</title><addtitle>ISIT</addtitle><description>A binary maximal length sequence (m-sequence) of period L = 2 m - 1 can be generated by a binary m-stage linear feedback shift-register (LFSR). Tap connections of the LFSR corresponds to a binary primitive polynomial of degree m. m-sequences enjoy several well-known and unique properties. A new property for m-sequences, called cross-recurrence property, is presented in this paper and its potential applications are briefly outlined.</description><subject>Clocks</subject><subject>cross-recurrence</subject><subject>Delay</subject><subject>finite fields</subject><subject>Galois fields</subject><subject>linear feedback shift-register</subject><subject>m-sequence</subject><subject>Polynomials</subject><subject>polynomials over GF</subject><subject>Table lookup</subject><subject>Vectors</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781467325806</isbn><isbn>1467325805</isbn><isbn>9781467325783</isbn><isbn>1467325791</isbn><isbn>9781467325790</isbn><isbn>1467325783</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNT01Lw0AUXK2CpeYHiJccvWzcj7zdl6MEPwIFD8297G5eIGJN3G0P_femWMG5zDAzDAxjd1IUUorqsdk0baGEVIVRWBqUFyyrLMrSWK3Aor5kSyXBcpTSLv5nKMzVXyYquGFZSh9ihj1VYcke6jimxCOFQ4z0FSif4jhR3B_zsc93PNH34WSnW3bdu89E2ZlXrH15bus3vn5_beqnNR_mvT0vjS6BqAf0AYNHF7ypyAXUnfNmFqZDAIWCOif6AB2VWvXgQAnrDeoVu_-dHYhoO8Vh5-Jxe76tfwDk2kcp</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Hemmati, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Cross-recurrence property of m-sequences</title><author>Hemmati, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-46345eef58bc8cb8acb69eac83dab6eac6d855280eda0fc5de432f5a5207b683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clocks</topic><topic>cross-recurrence</topic><topic>Delay</topic><topic>finite fields</topic><topic>Galois fields</topic><topic>linear feedback shift-register</topic><topic>m-sequence</topic><topic>Polynomials</topic><topic>polynomials over GF</topic><topic>Table lookup</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hemmati, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hemmati, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cross-recurrence property of m-sequences</atitle><btitle>2012 IEEE International Symposium on Information Theory Proceedings</btitle><stitle>ISIT</stitle><date>2012-07</date><risdate>2012</risdate><spage>851</spage><epage>854</epage><pages>851-854</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781467325806</isbn><isbn>1467325805</isbn><eisbn>9781467325783</eisbn><eisbn>1467325791</eisbn><eisbn>9781467325790</eisbn><eisbn>1467325783</eisbn><abstract>A binary maximal length sequence (m-sequence) of period L = 2 m - 1 can be generated by a binary m-stage linear feedback shift-register (LFSR). Tap connections of the LFSR corresponds to a binary primitive polynomial of degree m. m-sequences enjoy several well-known and unique properties. A new property for m-sequences, called cross-recurrence property, is presented in this paper and its potential applications are briefly outlined.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2012.6284681</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2012 IEEE International Symposium on Information Theory Proceedings, 2012, p.851-854 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_6284681 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clocks cross-recurrence Delay finite fields Galois fields linear feedback shift-register m-sequence Polynomials polynomials over GF Table lookup Vectors |
title | Cross-recurrence property of m-sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cross-recurrence%20property%20of%20m-sequences&rft.btitle=2012%20IEEE%20International%20Symposium%20on%20Information%20Theory%20Proceedings&rft.au=Hemmati,%20F.&rft.date=2012-07&rft.spage=851&rft.epage=854&rft.pages=851-854&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781467325806&rft.isbn_list=1467325805&rft_id=info:doi/10.1109/ISIT.2012.6284681&rft_dat=%3Cieee_6IE%3E6284681%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325783&rft.eisbn_list=1467325791&rft.eisbn_list=9781467325790&rft.eisbn_list=1467325783&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6284681&rfr_iscdi=true |