BPRS: Belief Propagation based iterative recommender system

In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ayday, Erman, Einolghozati, A., Fekri, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1996
container_issue
container_start_page 1992
container_title
container_volume
creator Ayday, Erman
Einolghozati, A.
Fekri, F.
description In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.
doi_str_mv 10.1109/ISIT.2012.6283648
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6283648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6283648</ieee_id><sourcerecordid>6283648</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cfd57dfd1d4723710e24c298bdbd985bae95c7ec664d20a9d8b5ad42a36c3b273</originalsourceid><addsrcrecordid>eNpNUFlLw0AYXC-w1PwA8WX_QOLehz7Z4hEoWGx9Lnt8kZWmKZsg9N8bsYLzMgwzzMAgdE1JRSmxt_WqXleMUFYpZrgS5gQVVhsqlOZMasNP0YRRqUtDqT777xmizv88YuUlKvr-k4zQP1E5Qfez5dvqDs9gm6DBy9zt3YcbUrfD3vUQcRogj_oLcIbQtS3sImTcH_oB2it00bhtD8WRp-j96XE9fykXr8_1_GFRpnFiKEMTpY5NpFFoxjUlwERg1vjoozXSO7AyaAhKiciIs9F46aJgjqvAPdN8im5-exMAbPY5tS4fNscr-DcQpU2M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>BPRS: Belief Propagation based iterative recommender system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ayday, Erman ; Einolghozati, A. ; Fekri, F.</creator><creatorcontrib>Ayday, Erman ; Einolghozati, A. ; Fekri, F.</creatorcontrib><description>In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781467325806</identifier><identifier>ISBN: 1467325805</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781467325783</identifier><identifier>EISBN: 1467325791</identifier><identifier>EISBN: 9781467325790</identifier><identifier>EISBN: 1467325783</identifier><identifier>DOI: 10.1109/ISIT.2012.6283648</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Belief propagation ; Business process re-engineering ; Complexity theory ; Prediction algorithms ; Probability distribution ; Recommender systems</subject><ispartof>2012 IEEE International Symposium on Information Theory Proceedings, 2012, p.1992-1996</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6283648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6283648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ayday, Erman</creatorcontrib><creatorcontrib>Einolghozati, A.</creatorcontrib><creatorcontrib>Fekri, F.</creatorcontrib><title>BPRS: Belief Propagation based iterative recommender system</title><title>2012 IEEE International Symposium on Information Theory Proceedings</title><addtitle>ISIT</addtitle><description>In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.</description><subject>Algorithm design and analysis</subject><subject>Belief propagation</subject><subject>Business process re-engineering</subject><subject>Complexity theory</subject><subject>Prediction algorithms</subject><subject>Probability distribution</subject><subject>Recommender systems</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781467325806</isbn><isbn>1467325805</isbn><isbn>9781467325783</isbn><isbn>1467325791</isbn><isbn>9781467325790</isbn><isbn>1467325783</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUFlLw0AYXC-w1PwA8WX_QOLehz7Z4hEoWGx9Lnt8kZWmKZsg9N8bsYLzMgwzzMAgdE1JRSmxt_WqXleMUFYpZrgS5gQVVhsqlOZMasNP0YRRqUtDqT777xmizv88YuUlKvr-k4zQP1E5Qfez5dvqDs9gm6DBy9zt3YcbUrfD3vUQcRogj_oLcIbQtS3sImTcH_oB2it00bhtD8WRp-j96XE9fykXr8_1_GFRpnFiKEMTpY5NpFFoxjUlwERg1vjoozXSO7AyaAhKiciIs9F46aJgjqvAPdN8im5-exMAbPY5tS4fNscr-DcQpU2M</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Ayday, Erman</creator><creator>Einolghozati, A.</creator><creator>Fekri, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>BPRS: Belief Propagation based iterative recommender system</title><author>Ayday, Erman ; Einolghozati, A. ; Fekri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cfd57dfd1d4723710e24c298bdbd985bae95c7ec664d20a9d8b5ad42a36c3b273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Belief propagation</topic><topic>Business process re-engineering</topic><topic>Complexity theory</topic><topic>Prediction algorithms</topic><topic>Probability distribution</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayday, Erman</creatorcontrib><creatorcontrib>Einolghozati, A.</creatorcontrib><creatorcontrib>Fekri, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayday, Erman</au><au>Einolghozati, A.</au><au>Fekri, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>BPRS: Belief Propagation based iterative recommender system</atitle><btitle>2012 IEEE International Symposium on Information Theory Proceedings</btitle><stitle>ISIT</stitle><date>2012-07</date><risdate>2012</risdate><spage>1992</spage><epage>1996</epage><pages>1992-1996</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781467325806</isbn><isbn>1467325805</isbn><eisbn>9781467325783</eisbn><eisbn>1467325791</eisbn><eisbn>9781467325790</eisbn><eisbn>1467325783</eisbn><abstract>In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2012.6283648</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2012 IEEE International Symposium on Information Theory Proceedings, 2012, p.1992-1996
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_6283648
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Belief propagation
Business process re-engineering
Complexity theory
Prediction algorithms
Probability distribution
Recommender systems
title BPRS: Belief Propagation based iterative recommender system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=BPRS:%20Belief%20Propagation%20based%20iterative%20recommender%20system&rft.btitle=2012%20IEEE%20International%20Symposium%20on%20Information%20Theory%20Proceedings&rft.au=Ayday,%20Erman&rft.date=2012-07&rft.spage=1992&rft.epage=1996&rft.pages=1992-1996&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781467325806&rft.isbn_list=1467325805&rft_id=info:doi/10.1109/ISIT.2012.6283648&rft_dat=%3Cieee_6IE%3E6283648%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325783&rft.eisbn_list=1467325791&rft.eisbn_list=9781467325790&rft.eisbn_list=1467325783&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6283648&rfr_iscdi=true