BPRS: Belief Propagation based iterative recommender system
In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1996 |
---|---|
container_issue | |
container_start_page | 1992 |
container_title | |
container_volume | |
creator | Ayday, Erman Einolghozati, A. Fekri, F. |
description | In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems. |
doi_str_mv | 10.1109/ISIT.2012.6283648 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6283648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6283648</ieee_id><sourcerecordid>6283648</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cfd57dfd1d4723710e24c298bdbd985bae95c7ec664d20a9d8b5ad42a36c3b273</originalsourceid><addsrcrecordid>eNpNUFlLw0AYXC-w1PwA8WX_QOLehz7Z4hEoWGx9Lnt8kZWmKZsg9N8bsYLzMgwzzMAgdE1JRSmxt_WqXleMUFYpZrgS5gQVVhsqlOZMasNP0YRRqUtDqT777xmizv88YuUlKvr-k4zQP1E5Qfez5dvqDs9gm6DBy9zt3YcbUrfD3vUQcRogj_oLcIbQtS3sImTcH_oB2it00bhtD8WRp-j96XE9fykXr8_1_GFRpnFiKEMTpY5NpFFoxjUlwERg1vjoozXSO7AyaAhKiciIs9F46aJgjqvAPdN8im5-exMAbPY5tS4fNscr-DcQpU2M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>BPRS: Belief Propagation based iterative recommender system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ayday, Erman ; Einolghozati, A. ; Fekri, F.</creator><creatorcontrib>Ayday, Erman ; Einolghozati, A. ; Fekri, F.</creatorcontrib><description>In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781467325806</identifier><identifier>ISBN: 1467325805</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781467325783</identifier><identifier>EISBN: 1467325791</identifier><identifier>EISBN: 9781467325790</identifier><identifier>EISBN: 1467325783</identifier><identifier>DOI: 10.1109/ISIT.2012.6283648</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Belief propagation ; Business process re-engineering ; Complexity theory ; Prediction algorithms ; Probability distribution ; Recommender systems</subject><ispartof>2012 IEEE International Symposium on Information Theory Proceedings, 2012, p.1992-1996</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6283648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6283648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ayday, Erman</creatorcontrib><creatorcontrib>Einolghozati, A.</creatorcontrib><creatorcontrib>Fekri, F.</creatorcontrib><title>BPRS: Belief Propagation based iterative recommender system</title><title>2012 IEEE International Symposium on Information Theory Proceedings</title><addtitle>ISIT</addtitle><description>In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.</description><subject>Algorithm design and analysis</subject><subject>Belief propagation</subject><subject>Business process re-engineering</subject><subject>Complexity theory</subject><subject>Prediction algorithms</subject><subject>Probability distribution</subject><subject>Recommender systems</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781467325806</isbn><isbn>1467325805</isbn><isbn>9781467325783</isbn><isbn>1467325791</isbn><isbn>9781467325790</isbn><isbn>1467325783</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUFlLw0AYXC-w1PwA8WX_QOLehz7Z4hEoWGx9Lnt8kZWmKZsg9N8bsYLzMgwzzMAgdE1JRSmxt_WqXleMUFYpZrgS5gQVVhsqlOZMasNP0YRRqUtDqT777xmizv88YuUlKvr-k4zQP1E5Qfez5dvqDs9gm6DBy9zt3YcbUrfD3vUQcRogj_oLcIbQtS3sImTcH_oB2it00bhtD8WRp-j96XE9fykXr8_1_GFRpnFiKEMTpY5NpFFoxjUlwERg1vjoozXSO7AyaAhKiciIs9F46aJgjqvAPdN8im5-exMAbPY5tS4fNscr-DcQpU2M</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Ayday, Erman</creator><creator>Einolghozati, A.</creator><creator>Fekri, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>BPRS: Belief Propagation based iterative recommender system</title><author>Ayday, Erman ; Einolghozati, A. ; Fekri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cfd57dfd1d4723710e24c298bdbd985bae95c7ec664d20a9d8b5ad42a36c3b273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Belief propagation</topic><topic>Business process re-engineering</topic><topic>Complexity theory</topic><topic>Prediction algorithms</topic><topic>Probability distribution</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayday, Erman</creatorcontrib><creatorcontrib>Einolghozati, A.</creatorcontrib><creatorcontrib>Fekri, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayday, Erman</au><au>Einolghozati, A.</au><au>Fekri, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>BPRS: Belief Propagation based iterative recommender system</atitle><btitle>2012 IEEE International Symposium on Information Theory Proceedings</btitle><stitle>ISIT</stitle><date>2012-07</date><risdate>2012</risdate><spage>1992</spage><epage>1996</epage><pages>1992-1996</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781467325806</isbn><isbn>1467325805</isbn><eisbn>9781467325783</eisbn><eisbn>1467325791</eisbn><eisbn>9781467325790</eisbn><eisbn>1467325783</eisbn><abstract>In this paper we introduce the first application of the Belief Propagation (BP) algorithm in the design of recommender systems. We formulate the recommendation problem as an inference problem and aim to compute the marginal probability distributions of the variables which represent the ratings to be predicted. However, computing these marginal probability functions is computationally prohibitive for large-scale systems. Therefore, we utilize the BP algorithm to efficiently compute these functions. Recommendations for each active user are then iteratively computed by probabilistic message passing. As opposed to the previous recommender algorithms, BPRS does not require solving the recommendation problem for all the users if it wishes to update the recommendations for only a single active. Further, BPRS computes the recommendations for each user with linear complexity and without requiring a training period. Via computer simulations (using the 100K MovieLens dataset), we verify that BPRS iteratively reduces the error in the predicted ratings of the users until it converges. Finally, we confirm that BPRS is comparable to the state of art methods such as Correlation-based neighborhood model (CorNgbr) and Singular Value Decomposition (SVD) in terms of rating and precision accuracy. Therefore, we believe that the BP-based recommendation algorithm is a new promising approach which offers a significant advantage on scalability while providing competitive accuracy for the recommender systems.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2012.6283648</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2012 IEEE International Symposium on Information Theory Proceedings, 2012, p.1992-1996 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_6283648 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Belief propagation Business process re-engineering Complexity theory Prediction algorithms Probability distribution Recommender systems |
title | BPRS: Belief Propagation based iterative recommender system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=BPRS:%20Belief%20Propagation%20based%20iterative%20recommender%20system&rft.btitle=2012%20IEEE%20International%20Symposium%20on%20Information%20Theory%20Proceedings&rft.au=Ayday,%20Erman&rft.date=2012-07&rft.spage=1992&rft.epage=1996&rft.pages=1992-1996&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781467325806&rft.isbn_list=1467325805&rft_id=info:doi/10.1109/ISIT.2012.6283648&rft_dat=%3Cieee_6IE%3E6283648%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325783&rft.eisbn_list=1467325791&rft.eisbn_list=9781467325790&rft.eisbn_list=1467325783&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6283648&rfr_iscdi=true |