Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation
Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list schedulin...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ying-Lin Tsai Kuo-Chan Huang Hsi-Ya Chang Ko, Jerry En Tzu Wang Ching-Hsien Hsu |
description | Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan. |
doi_str_mv | 10.1109/SERVICES.2012.15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6274023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6274023</ieee_id><sourcerecordid>6274023</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-81fda3eb2f626ad00ba5222496e21412f3d518f2fad91f75c8d9d01bfb531d543</originalsourceid><addsrcrecordid>eNotj0FLwzAYhiMqOOfugpf8gc4vSdMkx1k6HUwEO_Q40iZZ42I72pThv9cxT8_leV54EbonMCcE1GNZvH-s8qKcUyB0TvgFmikhQWSKp4Jn_BLdkjQTjAFn5ApNKBMyYZLIGzQbhi8AYEQqADFBTVk31ozBtzv8OoboD8Hisva2jd75GuvW4KLd-dba_uR8dv3ehe444Nj03bhr8EYPe5yHcYhn41Q82SEmSx_xIoSu1tF37R26djoMdvbPKdosi03-kqzfnlf5Yp14BTGRxBnNbEVdRjNtACrNKaWpyiwlKaGOGU6ko04bRZzgtTTKAKlc9ffU8JRN0cN51ltrt4fef-v-Z5tRkQJl7Bcwe1tU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying-Lin Tsai ; Kuo-Chan Huang ; Hsi-Ya Chang ; Ko, Jerry ; En Tzu Wang ; Ching-Hsien Hsu</creator><creatorcontrib>Ying-Lin Tsai ; Kuo-Chan Huang ; Hsi-Ya Chang ; Ko, Jerry ; En Tzu Wang ; Ching-Hsien Hsu</creatorcontrib><description>Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.</description><identifier>ISSN: 2378-3818</identifier><identifier>ISBN: 1467330531</identifier><identifier>ISBN: 9781467330534</identifier><identifier>EISBN: 9780769547565</identifier><identifier>EISBN: 0769547567</identifier><identifier>DOI: 10.1109/SERVICES.2012.15</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; Delay ; Job shop scheduling ; multiple workflow scheduling ; Processor scheduling ; Program processors ; Resource management ; Schedules ; task allocation</subject><ispartof>2012 IEEE Eighth World Congress on Services, 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6274023$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6274023$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Lin Tsai</creatorcontrib><creatorcontrib>Kuo-Chan Huang</creatorcontrib><creatorcontrib>Hsi-Ya Chang</creatorcontrib><creatorcontrib>Ko, Jerry</creatorcontrib><creatorcontrib>En Tzu Wang</creatorcontrib><creatorcontrib>Ching-Hsien Hsu</creatorcontrib><title>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</title><title>2012 IEEE Eighth World Congress on Services</title><addtitle>services</addtitle><description>Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.</description><subject>clustering</subject><subject>Delay</subject><subject>Job shop scheduling</subject><subject>multiple workflow scheduling</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Resource management</subject><subject>Schedules</subject><subject>task allocation</subject><issn>2378-3818</issn><isbn>1467330531</isbn><isbn>9781467330534</isbn><isbn>9780769547565</isbn><isbn>0769547567</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLwzAYhiMqOOfugpf8gc4vSdMkx1k6HUwEO_Q40iZZ42I72pThv9cxT8_leV54EbonMCcE1GNZvH-s8qKcUyB0TvgFmikhQWSKp4Jn_BLdkjQTjAFn5ApNKBMyYZLIGzQbhi8AYEQqADFBTVk31ozBtzv8OoboD8Hisva2jd75GuvW4KLd-dba_uR8dv3ehe444Nj03bhr8EYPe5yHcYhn41Q82SEmSx_xIoSu1tF37R26djoMdvbPKdosi03-kqzfnlf5Yp14BTGRxBnNbEVdRjNtACrNKaWpyiwlKaGOGU6ko04bRZzgtTTKAKlc9ffU8JRN0cN51ltrt4fef-v-Z5tRkQJl7Bcwe1tU</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Ying-Lin Tsai</creator><creator>Kuo-Chan Huang</creator><creator>Hsi-Ya Chang</creator><creator>Ko, Jerry</creator><creator>En Tzu Wang</creator><creator>Ching-Hsien Hsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</title><author>Ying-Lin Tsai ; Kuo-Chan Huang ; Hsi-Ya Chang ; Ko, Jerry ; En Tzu Wang ; Ching-Hsien Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-81fda3eb2f626ad00ba5222496e21412f3d518f2fad91f75c8d9d01bfb531d543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>clustering</topic><topic>Delay</topic><topic>Job shop scheduling</topic><topic>multiple workflow scheduling</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Resource management</topic><topic>Schedules</topic><topic>task allocation</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Lin Tsai</creatorcontrib><creatorcontrib>Kuo-Chan Huang</creatorcontrib><creatorcontrib>Hsi-Ya Chang</creatorcontrib><creatorcontrib>Ko, Jerry</creatorcontrib><creatorcontrib>En Tzu Wang</creatorcontrib><creatorcontrib>Ching-Hsien Hsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Lin Tsai</au><au>Kuo-Chan Huang</au><au>Hsi-Ya Chang</au><au>Ko, Jerry</au><au>En Tzu Wang</au><au>Ching-Hsien Hsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</atitle><btitle>2012 IEEE Eighth World Congress on Services</btitle><stitle>services</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2378-3818</issn><isbn>1467330531</isbn><isbn>9781467330534</isbn><eisbn>9780769547565</eisbn><eisbn>0769547567</eisbn><coden>IEEPAD</coden><abstract>Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.</abstract><pub>IEEE</pub><doi>10.1109/SERVICES.2012.15</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2378-3818 |
ispartof | 2012 IEEE Eighth World Congress on Services, 2012, p.1-8 |
issn | 2378-3818 |
language | eng |
recordid | cdi_ieee_primary_6274023 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | clustering Delay Job shop scheduling multiple workflow scheduling Processor scheduling Program processors Resource management Schedules task allocation |
title | Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scheduling%20Multiple%20Scientific%20and%20Engineering%20Workflows%20through%20Task%20Clustering%20and%20Best-Fit%20Allocation&rft.btitle=2012%20IEEE%20Eighth%20World%20Congress%20on%20Services&rft.au=Ying-Lin%20Tsai&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2378-3818&rft.isbn=1467330531&rft.isbn_list=9781467330534&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SERVICES.2012.15&rft_dat=%3Cieee_6IE%3E6274023%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547565&rft.eisbn_list=0769547567&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6274023&rfr_iscdi=true |