Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation

Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list schedulin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ying-Lin Tsai, Kuo-Chan Huang, Hsi-Ya Chang, Ko, Jerry, En Tzu Wang, Ching-Hsien Hsu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Ying-Lin Tsai
Kuo-Chan Huang
Hsi-Ya Chang
Ko, Jerry
En Tzu Wang
Ching-Hsien Hsu
description Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.
doi_str_mv 10.1109/SERVICES.2012.15
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6274023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6274023</ieee_id><sourcerecordid>6274023</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-81fda3eb2f626ad00ba5222496e21412f3d518f2fad91f75c8d9d01bfb531d543</originalsourceid><addsrcrecordid>eNotj0FLwzAYhiMqOOfugpf8gc4vSdMkx1k6HUwEO_Q40iZZ42I72pThv9cxT8_leV54EbonMCcE1GNZvH-s8qKcUyB0TvgFmikhQWSKp4Jn_BLdkjQTjAFn5ApNKBMyYZLIGzQbhi8AYEQqADFBTVk31ozBtzv8OoboD8Hisva2jd75GuvW4KLd-dba_uR8dv3ehe444Nj03bhr8EYPe5yHcYhn41Q82SEmSx_xIoSu1tF37R26djoMdvbPKdosi03-kqzfnlf5Yp14BTGRxBnNbEVdRjNtACrNKaWpyiwlKaGOGU6ko04bRZzgtTTKAKlc9ffU8JRN0cN51ltrt4fef-v-Z5tRkQJl7Bcwe1tU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying-Lin Tsai ; Kuo-Chan Huang ; Hsi-Ya Chang ; Ko, Jerry ; En Tzu Wang ; Ching-Hsien Hsu</creator><creatorcontrib>Ying-Lin Tsai ; Kuo-Chan Huang ; Hsi-Ya Chang ; Ko, Jerry ; En Tzu Wang ; Ching-Hsien Hsu</creatorcontrib><description>Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.</description><identifier>ISSN: 2378-3818</identifier><identifier>ISBN: 1467330531</identifier><identifier>ISBN: 9781467330534</identifier><identifier>EISBN: 9780769547565</identifier><identifier>EISBN: 0769547567</identifier><identifier>DOI: 10.1109/SERVICES.2012.15</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; Delay ; Job shop scheduling ; multiple workflow scheduling ; Processor scheduling ; Program processors ; Resource management ; Schedules ; task allocation</subject><ispartof>2012 IEEE Eighth World Congress on Services, 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6274023$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6274023$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Lin Tsai</creatorcontrib><creatorcontrib>Kuo-Chan Huang</creatorcontrib><creatorcontrib>Hsi-Ya Chang</creatorcontrib><creatorcontrib>Ko, Jerry</creatorcontrib><creatorcontrib>En Tzu Wang</creatorcontrib><creatorcontrib>Ching-Hsien Hsu</creatorcontrib><title>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</title><title>2012 IEEE Eighth World Congress on Services</title><addtitle>services</addtitle><description>Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.</description><subject>clustering</subject><subject>Delay</subject><subject>Job shop scheduling</subject><subject>multiple workflow scheduling</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Resource management</subject><subject>Schedules</subject><subject>task allocation</subject><issn>2378-3818</issn><isbn>1467330531</isbn><isbn>9781467330534</isbn><isbn>9780769547565</isbn><isbn>0769547567</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLwzAYhiMqOOfugpf8gc4vSdMkx1k6HUwEO_Q40iZZ42I72pThv9cxT8_leV54EbonMCcE1GNZvH-s8qKcUyB0TvgFmikhQWSKp4Jn_BLdkjQTjAFn5ApNKBMyYZLIGzQbhi8AYEQqADFBTVk31ozBtzv8OoboD8Hisva2jd75GuvW4KLd-dba_uR8dv3ehe444Nj03bhr8EYPe5yHcYhn41Q82SEmSx_xIoSu1tF37R26djoMdvbPKdosi03-kqzfnlf5Yp14BTGRxBnNbEVdRjNtACrNKaWpyiwlKaGOGU6ko04bRZzgtTTKAKlc9ffU8JRN0cN51ltrt4fef-v-Z5tRkQJl7Bcwe1tU</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Ying-Lin Tsai</creator><creator>Kuo-Chan Huang</creator><creator>Hsi-Ya Chang</creator><creator>Ko, Jerry</creator><creator>En Tzu Wang</creator><creator>Ching-Hsien Hsu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</title><author>Ying-Lin Tsai ; Kuo-Chan Huang ; Hsi-Ya Chang ; Ko, Jerry ; En Tzu Wang ; Ching-Hsien Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-81fda3eb2f626ad00ba5222496e21412f3d518f2fad91f75c8d9d01bfb531d543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>clustering</topic><topic>Delay</topic><topic>Job shop scheduling</topic><topic>multiple workflow scheduling</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Resource management</topic><topic>Schedules</topic><topic>task allocation</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Lin Tsai</creatorcontrib><creatorcontrib>Kuo-Chan Huang</creatorcontrib><creatorcontrib>Hsi-Ya Chang</creatorcontrib><creatorcontrib>Ko, Jerry</creatorcontrib><creatorcontrib>En Tzu Wang</creatorcontrib><creatorcontrib>Ching-Hsien Hsu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Lin Tsai</au><au>Kuo-Chan Huang</au><au>Hsi-Ya Chang</au><au>Ko, Jerry</au><au>En Tzu Wang</au><au>Ching-Hsien Hsu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation</atitle><btitle>2012 IEEE Eighth World Congress on Services</btitle><stitle>services</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2378-3818</issn><isbn>1467330531</isbn><isbn>9781467330534</isbn><eisbn>9780769547565</eisbn><eisbn>0769547567</eisbn><coden>IEEPAD</coden><abstract>Most previous workflow scheduling research focused on scheduling a single workflow on parallel systems. Recent researches show that utilizing idle time slots between scheduled tasks is a promising direction for efficient multiple workflow scheduling. Stavrinides and Karatza proposed a list scheduling approach to efficient utilization of the idle time slots through bin packing techniques. In this paper, we elaborate on this direction and develop a new approach to further improve multiple workflow scheduling performance through two techniques. The first, in contrast with the list scheduling approach, is clustering the tasks within workflows into groups before allocation. This can reduce inter-task communication cost and thus improve workflow execution performance. The second technique tries to make a balance between tasks' start time and the fitness of idle time slots when allocating task groups. The proposed approach has been evaluated with a series of simulation experiments and compared to the previous method. The results show that our approach outperforms the previous method significantly, up to 51% performance improvement in terms of average makespan.</abstract><pub>IEEE</pub><doi>10.1109/SERVICES.2012.15</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2378-3818
ispartof 2012 IEEE Eighth World Congress on Services, 2012, p.1-8
issn 2378-3818
language eng
recordid cdi_ieee_primary_6274023
source IEEE Electronic Library (IEL) Conference Proceedings
subjects clustering
Delay
Job shop scheduling
multiple workflow scheduling
Processor scheduling
Program processors
Resource management
Schedules
task allocation
title Scheduling Multiple Scientific and Engineering Workflows through Task Clustering and Best-Fit Allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scheduling%20Multiple%20Scientific%20and%20Engineering%20Workflows%20through%20Task%20Clustering%20and%20Best-Fit%20Allocation&rft.btitle=2012%20IEEE%20Eighth%20World%20Congress%20on%20Services&rft.au=Ying-Lin%20Tsai&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2378-3818&rft.isbn=1467330531&rft.isbn_list=9781467330534&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SERVICES.2012.15&rft_dat=%3Cieee_6IE%3E6274023%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547565&rft.eisbn_list=0769547567&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6274023&rfr_iscdi=true