Indoor ranging signal recovery via regularized CoSaMP
The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radic...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | |
container_volume | |
creator | Yun Lu Finger, A. |
description | The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches. |
doi_str_mv | 10.1109/WPNC.2012.6268738 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6268738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6268738</ieee_id><sourcerecordid>6268738</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-582179f4343bbb8e53928b03159615fac0a43c49e8b568287548ed27c56522943</originalsourceid><addsrcrecordid>eNpVj81Kw0AUhUdEUNo8gLiZF0icuXd-7iwl-FOotmDBZZkkkzASE5looT69AbvxbA7ftzhwGLuWopBSuNu37UtZgJBQGDBkkc5Y5ixJZSxKhY7O_7FVlyybpncxZ7YAdMX0amjGMfHkhy4OHZ9iN_iep1CPh5CO_BD9DN1371P8CQ0vx1f_vF2yi9b3U8hOvWC7h_td-ZSvN4-r8m6dRye-ck0grWsVKqyqioJGB1QJlNoZqVtfC6-wVi5QpQ0BWa0oNGBrbTSAU7hgN3-zMYSw_0zxw6fj_vQVfwEy-0VT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indoor ranging signal recovery via regularized CoSaMP</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yun Lu ; Finger, A.</creator><creatorcontrib>Yun Lu ; Finger, A.</creatorcontrib><description>The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.</description><identifier>ISBN: 9781467314374</identifier><identifier>ISBN: 1467314374</identifier><identifier>EISBN: 9781467314398</identifier><identifier>EISBN: 1467314390</identifier><identifier>EISBN: 1467314382</identifier><identifier>EISBN: 9781467314381</identifier><identifier>DOI: 10.1109/WPNC.2012.6268738</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chirp ; Distance measurement ; Estimation ; Interference ; Signal to noise ratio ; Silicon</subject><ispartof>2012 9th Workshop on Positioning, Navigation and Communication, 2012, p.53-58</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6268738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6268738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yun Lu</creatorcontrib><creatorcontrib>Finger, A.</creatorcontrib><title>Indoor ranging signal recovery via regularized CoSaMP</title><title>2012 9th Workshop on Positioning, Navigation and Communication</title><addtitle>WPNC</addtitle><description>The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.</description><subject>Chirp</subject><subject>Distance measurement</subject><subject>Estimation</subject><subject>Interference</subject><subject>Signal to noise ratio</subject><subject>Silicon</subject><isbn>9781467314374</isbn><isbn>1467314374</isbn><isbn>9781467314398</isbn><isbn>1467314390</isbn><isbn>1467314382</isbn><isbn>9781467314381</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw0AUhUdEUNo8gLiZF0icuXd-7iwl-FOotmDBZZkkkzASE5looT69AbvxbA7ftzhwGLuWopBSuNu37UtZgJBQGDBkkc5Y5ixJZSxKhY7O_7FVlyybpncxZ7YAdMX0amjGMfHkhy4OHZ9iN_iep1CPh5CO_BD9DN1371P8CQ0vx1f_vF2yi9b3U8hOvWC7h_td-ZSvN4-r8m6dRye-ck0grWsVKqyqioJGB1QJlNoZqVtfC6-wVi5QpQ0BWa0oNGBrbTSAU7hgN3-zMYSw_0zxw6fj_vQVfwEy-0VT</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Yun Lu</creator><creator>Finger, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Indoor ranging signal recovery via regularized CoSaMP</title><author>Yun Lu ; Finger, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-582179f4343bbb8e53928b03159615fac0a43c49e8b568287548ed27c56522943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chirp</topic><topic>Distance measurement</topic><topic>Estimation</topic><topic>Interference</topic><topic>Signal to noise ratio</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Yun Lu</creatorcontrib><creatorcontrib>Finger, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yun Lu</au><au>Finger, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indoor ranging signal recovery via regularized CoSaMP</atitle><btitle>2012 9th Workshop on Positioning, Navigation and Communication</btitle><stitle>WPNC</stitle><date>2012-03</date><risdate>2012</risdate><spage>53</spage><epage>58</epage><pages>53-58</pages><isbn>9781467314374</isbn><isbn>1467314374</isbn><eisbn>9781467314398</eisbn><eisbn>1467314390</eisbn><eisbn>1467314382</eisbn><eisbn>9781467314381</eisbn><abstract>The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.</abstract><pub>IEEE</pub><doi>10.1109/WPNC.2012.6268738</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467314374 |
ispartof | 2012 9th Workshop on Positioning, Navigation and Communication, 2012, p.53-58 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6268738 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chirp Distance measurement Estimation Interference Signal to noise ratio Silicon |
title | Indoor ranging signal recovery via regularized CoSaMP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indoor%20ranging%20signal%20recovery%20via%20regularized%20CoSaMP&rft.btitle=2012%209th%20Workshop%20on%20Positioning,%20Navigation%20and%20Communication&rft.au=Yun%20Lu&rft.date=2012-03&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.isbn=9781467314374&rft.isbn_list=1467314374&rft_id=info:doi/10.1109/WPNC.2012.6268738&rft_dat=%3Cieee_6IE%3E6268738%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314398&rft.eisbn_list=1467314390&rft.eisbn_list=1467314382&rft.eisbn_list=9781467314381&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6268738&rfr_iscdi=true |