Indoor ranging signal recovery via regularized CoSaMP

The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yun Lu, Finger, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 53
container_title
container_volume
creator Yun Lu
Finger, A.
description The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.
doi_str_mv 10.1109/WPNC.2012.6268738
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6268738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6268738</ieee_id><sourcerecordid>6268738</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-582179f4343bbb8e53928b03159615fac0a43c49e8b568287548ed27c56522943</originalsourceid><addsrcrecordid>eNpVj81Kw0AUhUdEUNo8gLiZF0icuXd-7iwl-FOotmDBZZkkkzASE5looT69AbvxbA7ftzhwGLuWopBSuNu37UtZgJBQGDBkkc5Y5ixJZSxKhY7O_7FVlyybpncxZ7YAdMX0amjGMfHkhy4OHZ9iN_iep1CPh5CO_BD9DN1371P8CQ0vx1f_vF2yi9b3U8hOvWC7h_td-ZSvN4-r8m6dRye-ck0grWsVKqyqioJGB1QJlNoZqVtfC6-wVi5QpQ0BWa0oNGBrbTSAU7hgN3-zMYSw_0zxw6fj_vQVfwEy-0VT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indoor ranging signal recovery via regularized CoSaMP</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yun Lu ; Finger, A.</creator><creatorcontrib>Yun Lu ; Finger, A.</creatorcontrib><description>The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.</description><identifier>ISBN: 9781467314374</identifier><identifier>ISBN: 1467314374</identifier><identifier>EISBN: 9781467314398</identifier><identifier>EISBN: 1467314390</identifier><identifier>EISBN: 1467314382</identifier><identifier>EISBN: 9781467314381</identifier><identifier>DOI: 10.1109/WPNC.2012.6268738</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chirp ; Distance measurement ; Estimation ; Interference ; Signal to noise ratio ; Silicon</subject><ispartof>2012 9th Workshop on Positioning, Navigation and Communication, 2012, p.53-58</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6268738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6268738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yun Lu</creatorcontrib><creatorcontrib>Finger, A.</creatorcontrib><title>Indoor ranging signal recovery via regularized CoSaMP</title><title>2012 9th Workshop on Positioning, Navigation and Communication</title><addtitle>WPNC</addtitle><description>The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.</description><subject>Chirp</subject><subject>Distance measurement</subject><subject>Estimation</subject><subject>Interference</subject><subject>Signal to noise ratio</subject><subject>Silicon</subject><isbn>9781467314374</isbn><isbn>1467314374</isbn><isbn>9781467314398</isbn><isbn>1467314390</isbn><isbn>1467314382</isbn><isbn>9781467314381</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw0AUhUdEUNo8gLiZF0icuXd-7iwl-FOotmDBZZkkkzASE5looT69AbvxbA7ftzhwGLuWopBSuNu37UtZgJBQGDBkkc5Y5ixJZSxKhY7O_7FVlyybpncxZ7YAdMX0amjGMfHkhy4OHZ9iN_iep1CPh5CO_BD9DN1371P8CQ0vx1f_vF2yi9b3U8hOvWC7h_td-ZSvN4-r8m6dRye-ck0grWsVKqyqioJGB1QJlNoZqVtfC6-wVi5QpQ0BWa0oNGBrbTSAU7hgN3-zMYSw_0zxw6fj_vQVfwEy-0VT</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Yun Lu</creator><creator>Finger, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Indoor ranging signal recovery via regularized CoSaMP</title><author>Yun Lu ; Finger, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-582179f4343bbb8e53928b03159615fac0a43c49e8b568287548ed27c56522943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chirp</topic><topic>Distance measurement</topic><topic>Estimation</topic><topic>Interference</topic><topic>Signal to noise ratio</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Yun Lu</creatorcontrib><creatorcontrib>Finger, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yun Lu</au><au>Finger, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indoor ranging signal recovery via regularized CoSaMP</atitle><btitle>2012 9th Workshop on Positioning, Navigation and Communication</btitle><stitle>WPNC</stitle><date>2012-03</date><risdate>2012</risdate><spage>53</spage><epage>58</epage><pages>53-58</pages><isbn>9781467314374</isbn><isbn>1467314374</isbn><eisbn>9781467314398</eisbn><eisbn>1467314390</eisbn><eisbn>1467314382</eisbn><eisbn>9781467314381</eisbn><abstract>The indoor ranging signal recovery requires not only the high detection probability but also the excellent detection accuracy, which is related to the matched filter output SINR, especially for radio signal based location and positioning systems, where little deviation of time delay will yield radical error of position estimation. Furthermore, the ranging signals in multi-measurment channels demands the so-called sparse condition [1] for uniquely determining the results. Because the corresponding recovery matrix in terms of time-code frame is a wide matrix, which can not be orthogonalized between all columns any more. So far, many related recovery algorithms haven been developed, like optimization based l 1 -norm minimization and greedy approaches based OMP, ROMP and CoSaMP [2]. However, these algorithms are either not real-time enough or short of uniform performance in different scenarios. In this paper we will first introduce the novel ranging signals for higher time delay estimation, then develop the corresponding detection algorithm namely Regularized Compressive Sampling Mathing Pursuit (RCoSaMP), which outperforms the most conventional detection approaches.</abstract><pub>IEEE</pub><doi>10.1109/WPNC.2012.6268738</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467314374
ispartof 2012 9th Workshop on Positioning, Navigation and Communication, 2012, p.53-58
issn
language eng
recordid cdi_ieee_primary_6268738
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chirp
Distance measurement
Estimation
Interference
Signal to noise ratio
Silicon
title Indoor ranging signal recovery via regularized CoSaMP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indoor%20ranging%20signal%20recovery%20via%20regularized%20CoSaMP&rft.btitle=2012%209th%20Workshop%20on%20Positioning,%20Navigation%20and%20Communication&rft.au=Yun%20Lu&rft.date=2012-03&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.isbn=9781467314374&rft.isbn_list=1467314374&rft_id=info:doi/10.1109/WPNC.2012.6268738&rft_dat=%3Cieee_6IE%3E6268738%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314398&rft.eisbn_list=1467314390&rft.eisbn_list=1467314382&rft.eisbn_list=9781467314381&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6268738&rfr_iscdi=true