Spammer Behavior Analysis and Detection in User Generated Content on Social Networks
Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spa...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | |
container_volume | |
creator | Enhua Tan Lei Guo Songqing Chen Xiaodong Zhang Yihong Zhao |
description | Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS. |
doi_str_mv | 10.1109/ICDCS.2012.40 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6258003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6258003</ieee_id><sourcerecordid>6258003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-dc0a57453c11ad52fbbafd3ac042e834e2342b23fe0bf104eadfb80979f186a83</originalsourceid><addsrcrecordid>eNotjDtPwzAURs1LopSOTCz-Ayn3-hHbY0mhVKpgaDtXTnItDG1SxRaIf08l-JYznKOPsTuEKSK4h2U1r9ZTASimCs7YxBkLpnRalVbbczYS2ujCKsQLdoNKGwPCaXfJRgilLEonzDWbpPQBpxmLKOyIbdZHfzjQwB_p3X_FfuCzzu9_Ukzcdy2fU6Ymx77jsePbdOoW1NHgM7W86rtMXeYnue6b6Pf8lfJ3P3ymW3YV_D7R5J9jtn1-2lQvxeptsaxmqyKi0bloG_DaKC0bRN9qEerah1b6BpQgKxUJqUQtZCCoA4Ii34bagjMuoC29lWN2__cbiWh3HOLBDz-7UmgLIOUvZYtU5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Enhua Tan ; Lei Guo ; Songqing Chen ; Xiaodong Zhang ; Yihong Zhao</creator><creatorcontrib>Enhua Tan ; Lei Guo ; Songqing Chen ; Xiaodong Zhang ; Yihong Zhao</creatorcontrib><description>Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.</description><identifier>ISSN: 1063-6927</identifier><identifier>ISBN: 1457702959</identifier><identifier>ISBN: 9781457702952</identifier><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 9780769546858</identifier><identifier>EISBN: 0769546854</identifier><identifier>DOI: 10.1109/ICDCS.2012.40</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bars ; Blogs ; Feature extraction ; Runtime ; Software ; Unsolicited electronic mail</subject><ispartof>2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.305-314</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6258003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6258003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Enhua Tan</creatorcontrib><creatorcontrib>Lei Guo</creatorcontrib><creatorcontrib>Songqing Chen</creatorcontrib><creatorcontrib>Xiaodong Zhang</creatorcontrib><creatorcontrib>Yihong Zhao</creatorcontrib><title>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</title><title>2012 IEEE 32nd International Conference on Distributed Computing Systems</title><addtitle>ICDSC</addtitle><description>Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.</description><subject>Bars</subject><subject>Blogs</subject><subject>Feature extraction</subject><subject>Runtime</subject><subject>Software</subject><subject>Unsolicited electronic mail</subject><issn>1063-6927</issn><issn>2575-8411</issn><isbn>1457702959</isbn><isbn>9781457702952</isbn><isbn>9780769546858</isbn><isbn>0769546854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjDtPwzAURs1LopSOTCz-Ayn3-hHbY0mhVKpgaDtXTnItDG1SxRaIf08l-JYznKOPsTuEKSK4h2U1r9ZTASimCs7YxBkLpnRalVbbczYS2ujCKsQLdoNKGwPCaXfJRgilLEonzDWbpPQBpxmLKOyIbdZHfzjQwB_p3X_FfuCzzu9_Ukzcdy2fU6Ymx77jsePbdOoW1NHgM7W86rtMXeYnue6b6Pf8lfJ3P3ymW3YV_D7R5J9jtn1-2lQvxeptsaxmqyKi0bloG_DaKC0bRN9qEerah1b6BpQgKxUJqUQtZCCoA4Ii34bagjMuoC29lWN2__cbiWh3HOLBDz-7UmgLIOUvZYtU5Q</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Enhua Tan</creator><creator>Lei Guo</creator><creator>Songqing Chen</creator><creator>Xiaodong Zhang</creator><creator>Yihong Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</title><author>Enhua Tan ; Lei Guo ; Songqing Chen ; Xiaodong Zhang ; Yihong Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-dc0a57453c11ad52fbbafd3ac042e834e2342b23fe0bf104eadfb80979f186a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bars</topic><topic>Blogs</topic><topic>Feature extraction</topic><topic>Runtime</topic><topic>Software</topic><topic>Unsolicited electronic mail</topic><toplevel>online_resources</toplevel><creatorcontrib>Enhua Tan</creatorcontrib><creatorcontrib>Lei Guo</creatorcontrib><creatorcontrib>Songqing Chen</creatorcontrib><creatorcontrib>Xiaodong Zhang</creatorcontrib><creatorcontrib>Yihong Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Enhua Tan</au><au>Lei Guo</au><au>Songqing Chen</au><au>Xiaodong Zhang</au><au>Yihong Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</atitle><btitle>2012 IEEE 32nd International Conference on Distributed Computing Systems</btitle><stitle>ICDSC</stitle><date>2012-06</date><risdate>2012</risdate><spage>305</spage><epage>314</epage><pages>305-314</pages><issn>1063-6927</issn><eissn>2575-8411</eissn><isbn>1457702959</isbn><isbn>9781457702952</isbn><eisbn>9780769546858</eisbn><eisbn>0769546854</eisbn><coden>IEEPAD</coden><abstract>Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2012.40</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6927 |
ispartof | 2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.305-314 |
issn | 1063-6927 2575-8411 |
language | eng |
recordid | cdi_ieee_primary_6258003 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bars Blogs Feature extraction Runtime Software Unsolicited electronic mail |
title | Spammer Behavior Analysis and Detection in User Generated Content on Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spammer%20Behavior%20Analysis%20and%20Detection%20in%20User%20Generated%20Content%20on%20Social%20Networks&rft.btitle=2012%20IEEE%2032nd%20International%20Conference%20on%20Distributed%20Computing%20Systems&rft.au=Enhua%20Tan&rft.date=2012-06&rft.spage=305&rft.epage=314&rft.pages=305-314&rft.issn=1063-6927&rft.eissn=2575-8411&rft.isbn=1457702959&rft.isbn_list=9781457702952&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2012.40&rft_dat=%3Cieee_6IE%3E6258003%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546858&rft.eisbn_list=0769546854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6258003&rfr_iscdi=true |