Spammer Behavior Analysis and Detection in User Generated Content on Social Networks

Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Enhua Tan, Lei Guo, Songqing Chen, Xiaodong Zhang, Yihong Zhao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue
container_start_page 305
container_title
container_volume
creator Enhua Tan
Lei Guo
Songqing Chen
Xiaodong Zhang
Yihong Zhao
description Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.
doi_str_mv 10.1109/ICDCS.2012.40
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6258003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6258003</ieee_id><sourcerecordid>6258003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-dc0a57453c11ad52fbbafd3ac042e834e2342b23fe0bf104eadfb80979f186a83</originalsourceid><addsrcrecordid>eNotjDtPwzAURs1LopSOTCz-Ayn3-hHbY0mhVKpgaDtXTnItDG1SxRaIf08l-JYznKOPsTuEKSK4h2U1r9ZTASimCs7YxBkLpnRalVbbczYS2ujCKsQLdoNKGwPCaXfJRgilLEonzDWbpPQBpxmLKOyIbdZHfzjQwB_p3X_FfuCzzu9_Ukzcdy2fU6Ymx77jsePbdOoW1NHgM7W86rtMXeYnue6b6Pf8lfJ3P3ymW3YV_D7R5J9jtn1-2lQvxeptsaxmqyKi0bloG_DaKC0bRN9qEerah1b6BpQgKxUJqUQtZCCoA4Ii34bagjMuoC29lWN2__cbiWh3HOLBDz-7UmgLIOUvZYtU5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Enhua Tan ; Lei Guo ; Songqing Chen ; Xiaodong Zhang ; Yihong Zhao</creator><creatorcontrib>Enhua Tan ; Lei Guo ; Songqing Chen ; Xiaodong Zhang ; Yihong Zhao</creatorcontrib><description>Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.</description><identifier>ISSN: 1063-6927</identifier><identifier>ISBN: 1457702959</identifier><identifier>ISBN: 9781457702952</identifier><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 9780769546858</identifier><identifier>EISBN: 0769546854</identifier><identifier>DOI: 10.1109/ICDCS.2012.40</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bars ; Blogs ; Feature extraction ; Runtime ; Software ; Unsolicited electronic mail</subject><ispartof>2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.305-314</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6258003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6258003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Enhua Tan</creatorcontrib><creatorcontrib>Lei Guo</creatorcontrib><creatorcontrib>Songqing Chen</creatorcontrib><creatorcontrib>Xiaodong Zhang</creatorcontrib><creatorcontrib>Yihong Zhao</creatorcontrib><title>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</title><title>2012 IEEE 32nd International Conference on Distributed Computing Systems</title><addtitle>ICDSC</addtitle><description>Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.</description><subject>Bars</subject><subject>Blogs</subject><subject>Feature extraction</subject><subject>Runtime</subject><subject>Software</subject><subject>Unsolicited electronic mail</subject><issn>1063-6927</issn><issn>2575-8411</issn><isbn>1457702959</isbn><isbn>9781457702952</isbn><isbn>9780769546858</isbn><isbn>0769546854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjDtPwzAURs1LopSOTCz-Ayn3-hHbY0mhVKpgaDtXTnItDG1SxRaIf08l-JYznKOPsTuEKSK4h2U1r9ZTASimCs7YxBkLpnRalVbbczYS2ujCKsQLdoNKGwPCaXfJRgilLEonzDWbpPQBpxmLKOyIbdZHfzjQwB_p3X_FfuCzzu9_Ukzcdy2fU6Ymx77jsePbdOoW1NHgM7W86rtMXeYnue6b6Pf8lfJ3P3ymW3YV_D7R5J9jtn1-2lQvxeptsaxmqyKi0bloG_DaKC0bRN9qEerah1b6BpQgKxUJqUQtZCCoA4Ii34bagjMuoC29lWN2__cbiWh3HOLBDz-7UmgLIOUvZYtU5Q</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Enhua Tan</creator><creator>Lei Guo</creator><creator>Songqing Chen</creator><creator>Xiaodong Zhang</creator><creator>Yihong Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</title><author>Enhua Tan ; Lei Guo ; Songqing Chen ; Xiaodong Zhang ; Yihong Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-dc0a57453c11ad52fbbafd3ac042e834e2342b23fe0bf104eadfb80979f186a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bars</topic><topic>Blogs</topic><topic>Feature extraction</topic><topic>Runtime</topic><topic>Software</topic><topic>Unsolicited electronic mail</topic><toplevel>online_resources</toplevel><creatorcontrib>Enhua Tan</creatorcontrib><creatorcontrib>Lei Guo</creatorcontrib><creatorcontrib>Songqing Chen</creatorcontrib><creatorcontrib>Xiaodong Zhang</creatorcontrib><creatorcontrib>Yihong Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Enhua Tan</au><au>Lei Guo</au><au>Songqing Chen</au><au>Xiaodong Zhang</au><au>Yihong Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spammer Behavior Analysis and Detection in User Generated Content on Social Networks</atitle><btitle>2012 IEEE 32nd International Conference on Distributed Computing Systems</btitle><stitle>ICDSC</stitle><date>2012-06</date><risdate>2012</risdate><spage>305</spage><epage>314</epage><pages>305-314</pages><issn>1063-6927</issn><eissn>2575-8411</eissn><isbn>1457702959</isbn><isbn>9781457702952</isbn><eisbn>9780769546858</eisbn><eisbn>0769546854</eisbn><coden>IEEPAD</coden><abstract>Spam content is surging with an explosive increase of user generated content (UGC) on the Internet. Spammers often insert popular keywords or simply copy and paste recent articles from the Web with spam links inserted, attempting to disable content-based detection. In order to effectively detect spam in user generated content, we first conduct a comprehensive analysis of spamming activities on a large commercial UGC site in 325 days covering over 6 million posts and nearly 400 thousand users. Our analysis shows that UGC spammers exhibit unique non-textual patterns, such as posting activities, advertised spam link metrics, and spam hosting behaviors. Based on these non-textual features, we show via several classification methods that a high detection rate could be achieved offline. These results further motivate us to develop a runtime scheme, BARS, to detect spam posts based on these spamming patterns. The experimental results demonstrate the effectiveness and robustness of BARS.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2012.40</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6927
ispartof 2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.305-314
issn 1063-6927
2575-8411
language eng
recordid cdi_ieee_primary_6258003
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bars
Blogs
Feature extraction
Runtime
Software
Unsolicited electronic mail
title Spammer Behavior Analysis and Detection in User Generated Content on Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spammer%20Behavior%20Analysis%20and%20Detection%20in%20User%20Generated%20Content%20on%20Social%20Networks&rft.btitle=2012%20IEEE%2032nd%20International%20Conference%20on%20Distributed%20Computing%20Systems&rft.au=Enhua%20Tan&rft.date=2012-06&rft.spage=305&rft.epage=314&rft.pages=305-314&rft.issn=1063-6927&rft.eissn=2575-8411&rft.isbn=1457702959&rft.isbn_list=9781457702952&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2012.40&rft_dat=%3Cieee_6IE%3E6258003%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546858&rft.eisbn_list=0769546854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6258003&rfr_iscdi=true