PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems
Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | |
container_volume | |
creator | Yongmin Tan Hiep Nguyen Zhiming Shen Xiaohui Gu Venkatramani, C. Rajan, D. |
description | Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure. |
doi_str_mv | 10.1109/ICDCS.2012.65 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6258001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6258001</ieee_id><sourcerecordid>6258001</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-71b290a4d5f99b6b99fdae38fcbcc7f3b68b0ad045031c53f514800c019326bf3</originalsourceid><addsrcrecordid>eNotjEtLAzEURuMLrLVLV27yB6bem0xe7spYtVBwaNVtSTIJROYhM2Oh_norejbf4nwcQm4Q5ohg7lbFQ7GdM0A2l-KEzIzSoKQRudRCn5IJE0pkOkc8I1eYC6WAGWHOyQRB8kwapi7JbBg-4IjSiExPSFluluVis7ynZR-q5Me0D7QMfez6xrY-0EXbNbY-_Op9aMfUtfTo6Hvqxy9bp-9Q0aLuviq6PQxjaIZrchFtPYTZ_07J2-PytXjO1i9Pq2KxzhIqMWYKHTNg80pEY5x0xsTKBq6jd96ryJ3UDmwFuQCOXvAoMNcAHtBwJl3kU3L7100hhN1nnxrbH3aSieML-Q_DP1MH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yongmin Tan ; Hiep Nguyen ; Zhiming Shen ; Xiaohui Gu ; Venkatramani, C. ; Rajan, D.</creator><creatorcontrib>Yongmin Tan ; Hiep Nguyen ; Zhiming Shen ; Xiaohui Gu ; Venkatramani, C. ; Rajan, D.</creatorcontrib><description>Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.</description><identifier>ISSN: 1063-6927</identifier><identifier>ISBN: 1457702959</identifier><identifier>ISBN: 9781457702952</identifier><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 9780769546858</identifier><identifier>EISBN: 0769546854</identifier><identifier>DOI: 10.1109/ICDCS.2012.65</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Benchmark testing ; Cloud computing ; Markov processes ; Measurement ; Monitoring ; online anomaly prediction ; performance anomaly prevention ; Predictive models</subject><ispartof>2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.285-294</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6258001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6258001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongmin Tan</creatorcontrib><creatorcontrib>Hiep Nguyen</creatorcontrib><creatorcontrib>Zhiming Shen</creatorcontrib><creatorcontrib>Xiaohui Gu</creatorcontrib><creatorcontrib>Venkatramani, C.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><title>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</title><title>2012 IEEE 32nd International Conference on Distributed Computing Systems</title><addtitle>ICDSC</addtitle><description>Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.</description><subject>Bayesian methods</subject><subject>Benchmark testing</subject><subject>Cloud computing</subject><subject>Markov processes</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>online anomaly prediction</subject><subject>performance anomaly prevention</subject><subject>Predictive models</subject><issn>1063-6927</issn><issn>2575-8411</issn><isbn>1457702959</isbn><isbn>9781457702952</isbn><isbn>9780769546858</isbn><isbn>0769546854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLAzEURuMLrLVLV27yB6bem0xe7spYtVBwaNVtSTIJROYhM2Oh_norejbf4nwcQm4Q5ohg7lbFQ7GdM0A2l-KEzIzSoKQRudRCn5IJE0pkOkc8I1eYC6WAGWHOyQRB8kwapi7JbBg-4IjSiExPSFluluVis7ynZR-q5Me0D7QMfez6xrY-0EXbNbY-_Op9aMfUtfTo6Hvqxy9bp-9Q0aLuviq6PQxjaIZrchFtPYTZ_07J2-PytXjO1i9Pq2KxzhIqMWYKHTNg80pEY5x0xsTKBq6jd96ryJ3UDmwFuQCOXvAoMNcAHtBwJl3kU3L7100hhN1nnxrbH3aSieML-Q_DP1MH</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Yongmin Tan</creator><creator>Hiep Nguyen</creator><creator>Zhiming Shen</creator><creator>Xiaohui Gu</creator><creator>Venkatramani, C.</creator><creator>Rajan, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</title><author>Yongmin Tan ; Hiep Nguyen ; Zhiming Shen ; Xiaohui Gu ; Venkatramani, C. ; Rajan, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-71b290a4d5f99b6b99fdae38fcbcc7f3b68b0ad045031c53f514800c019326bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian methods</topic><topic>Benchmark testing</topic><topic>Cloud computing</topic><topic>Markov processes</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>online anomaly prediction</topic><topic>performance anomaly prevention</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Yongmin Tan</creatorcontrib><creatorcontrib>Hiep Nguyen</creatorcontrib><creatorcontrib>Zhiming Shen</creatorcontrib><creatorcontrib>Xiaohui Gu</creatorcontrib><creatorcontrib>Venkatramani, C.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongmin Tan</au><au>Hiep Nguyen</au><au>Zhiming Shen</au><au>Xiaohui Gu</au><au>Venkatramani, C.</au><au>Rajan, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</atitle><btitle>2012 IEEE 32nd International Conference on Distributed Computing Systems</btitle><stitle>ICDSC</stitle><date>2012-06</date><risdate>2012</risdate><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>1063-6927</issn><eissn>2575-8411</eissn><isbn>1457702959</isbn><isbn>9781457702952</isbn><eisbn>9780769546858</eisbn><eisbn>0769546854</eisbn><coden>IEEPAD</coden><abstract>Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2012.65</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6927 |
ispartof | 2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.285-294 |
issn | 1063-6927 2575-8411 |
language | eng |
recordid | cdi_ieee_primary_6258001 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Benchmark testing Cloud computing Markov processes Measurement Monitoring online anomaly prediction performance anomaly prevention Predictive models |
title | PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PREPARE:%20Predictive%20Performance%20Anomaly%20Prevention%20for%20Virtualized%20Cloud%20Systems&rft.btitle=2012%20IEEE%2032nd%20International%20Conference%20on%20Distributed%20Computing%20Systems&rft.au=Yongmin%20Tan&rft.date=2012-06&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=1063-6927&rft.eissn=2575-8411&rft.isbn=1457702959&rft.isbn_list=9781457702952&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2012.65&rft_dat=%3Cieee_6IE%3E6258001%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546858&rft.eisbn_list=0769546854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6258001&rfr_iscdi=true |