PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems

Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Venkatramani, C., Rajan, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue
container_start_page 285
container_title
container_volume
creator Yongmin Tan
Hiep Nguyen
Zhiming Shen
Xiaohui Gu
Venkatramani, C.
Rajan, D.
description Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.
doi_str_mv 10.1109/ICDCS.2012.65
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6258001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6258001</ieee_id><sourcerecordid>6258001</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-71b290a4d5f99b6b99fdae38fcbcc7f3b68b0ad045031c53f514800c019326bf3</originalsourceid><addsrcrecordid>eNotjEtLAzEURuMLrLVLV27yB6bem0xe7spYtVBwaNVtSTIJROYhM2Oh_norejbf4nwcQm4Q5ohg7lbFQ7GdM0A2l-KEzIzSoKQRudRCn5IJE0pkOkc8I1eYC6WAGWHOyQRB8kwapi7JbBg-4IjSiExPSFluluVis7ynZR-q5Me0D7QMfez6xrY-0EXbNbY-_Op9aMfUtfTo6Hvqxy9bp-9Q0aLuviq6PQxjaIZrchFtPYTZ_07J2-PytXjO1i9Pq2KxzhIqMWYKHTNg80pEY5x0xsTKBq6jd96ryJ3UDmwFuQCOXvAoMNcAHtBwJl3kU3L7100hhN1nnxrbH3aSieML-Q_DP1MH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yongmin Tan ; Hiep Nguyen ; Zhiming Shen ; Xiaohui Gu ; Venkatramani, C. ; Rajan, D.</creator><creatorcontrib>Yongmin Tan ; Hiep Nguyen ; Zhiming Shen ; Xiaohui Gu ; Venkatramani, C. ; Rajan, D.</creatorcontrib><description>Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.</description><identifier>ISSN: 1063-6927</identifier><identifier>ISBN: 1457702959</identifier><identifier>ISBN: 9781457702952</identifier><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 9780769546858</identifier><identifier>EISBN: 0769546854</identifier><identifier>DOI: 10.1109/ICDCS.2012.65</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Benchmark testing ; Cloud computing ; Markov processes ; Measurement ; Monitoring ; online anomaly prediction ; performance anomaly prevention ; Predictive models</subject><ispartof>2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.285-294</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6258001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6258001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongmin Tan</creatorcontrib><creatorcontrib>Hiep Nguyen</creatorcontrib><creatorcontrib>Zhiming Shen</creatorcontrib><creatorcontrib>Xiaohui Gu</creatorcontrib><creatorcontrib>Venkatramani, C.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><title>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</title><title>2012 IEEE 32nd International Conference on Distributed Computing Systems</title><addtitle>ICDSC</addtitle><description>Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.</description><subject>Bayesian methods</subject><subject>Benchmark testing</subject><subject>Cloud computing</subject><subject>Markov processes</subject><subject>Measurement</subject><subject>Monitoring</subject><subject>online anomaly prediction</subject><subject>performance anomaly prevention</subject><subject>Predictive models</subject><issn>1063-6927</issn><issn>2575-8411</issn><isbn>1457702959</isbn><isbn>9781457702952</isbn><isbn>9780769546858</isbn><isbn>0769546854</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLAzEURuMLrLVLV27yB6bem0xe7spYtVBwaNVtSTIJROYhM2Oh_norejbf4nwcQm4Q5ohg7lbFQ7GdM0A2l-KEzIzSoKQRudRCn5IJE0pkOkc8I1eYC6WAGWHOyQRB8kwapi7JbBg-4IjSiExPSFluluVis7ynZR-q5Me0D7QMfez6xrY-0EXbNbY-_Op9aMfUtfTo6Hvqxy9bp-9Q0aLuviq6PQxjaIZrchFtPYTZ_07J2-PytXjO1i9Pq2KxzhIqMWYKHTNg80pEY5x0xsTKBq6jd96ryJ3UDmwFuQCOXvAoMNcAHtBwJl3kU3L7100hhN1nnxrbH3aSieML-Q_DP1MH</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Yongmin Tan</creator><creator>Hiep Nguyen</creator><creator>Zhiming Shen</creator><creator>Xiaohui Gu</creator><creator>Venkatramani, C.</creator><creator>Rajan, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</title><author>Yongmin Tan ; Hiep Nguyen ; Zhiming Shen ; Xiaohui Gu ; Venkatramani, C. ; Rajan, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-71b290a4d5f99b6b99fdae38fcbcc7f3b68b0ad045031c53f514800c019326bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian methods</topic><topic>Benchmark testing</topic><topic>Cloud computing</topic><topic>Markov processes</topic><topic>Measurement</topic><topic>Monitoring</topic><topic>online anomaly prediction</topic><topic>performance anomaly prevention</topic><topic>Predictive models</topic><toplevel>online_resources</toplevel><creatorcontrib>Yongmin Tan</creatorcontrib><creatorcontrib>Hiep Nguyen</creatorcontrib><creatorcontrib>Zhiming Shen</creatorcontrib><creatorcontrib>Xiaohui Gu</creatorcontrib><creatorcontrib>Venkatramani, C.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongmin Tan</au><au>Hiep Nguyen</au><au>Zhiming Shen</au><au>Xiaohui Gu</au><au>Venkatramani, C.</au><au>Rajan, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems</atitle><btitle>2012 IEEE 32nd International Conference on Distributed Computing Systems</btitle><stitle>ICDSC</stitle><date>2012-06</date><risdate>2012</risdate><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>1063-6927</issn><eissn>2575-8411</eissn><isbn>1457702959</isbn><isbn>9781457702952</isbn><eisbn>9780769546858</eisbn><eisbn>0769546854</eisbn><coden>IEEPAD</coden><abstract>Virtualized cloud systems are prone to performance anomalies due to various reasons such as resource contentions, software bugs, and hardware failures. In this paper, we present a novel Predictive Performance Anomaly Prevention (PREPARE) system that provides automatic performance anomaly prevention for virtualized cloud computing infrastructures. PREPARE integrates online anomaly prediction, learning-based cause inference, and predictive prevention actuation to minimize the performance anomaly penalty without human intervention. We have implemented PREPARE on top of the Xen platform and tested it on the NCSU's Virtual Computing Lab using a commercial data stream processing system (IBM System S) and an online auction benchmark (RUBiS). The experimental results show that PREPARE can effectively prevent performance anomalies while imposing low overhead to the cloud infrastructure.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2012.65</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6927
ispartof 2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, p.285-294
issn 1063-6927
2575-8411
language eng
recordid cdi_ieee_primary_6258001
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Benchmark testing
Cloud computing
Markov processes
Measurement
Monitoring
online anomaly prediction
performance anomaly prevention
Predictive models
title PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PREPARE:%20Predictive%20Performance%20Anomaly%20Prevention%20for%20Virtualized%20Cloud%20Systems&rft.btitle=2012%20IEEE%2032nd%20International%20Conference%20on%20Distributed%20Computing%20Systems&rft.au=Yongmin%20Tan&rft.date=2012-06&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=1063-6927&rft.eissn=2575-8411&rft.isbn=1457702959&rft.isbn_list=9781457702952&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2012.65&rft_dat=%3Cieee_6IE%3E6258001%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546858&rft.eisbn_list=0769546854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6258001&rfr_iscdi=true