Computing the Nearest Neighbor Transform Exactly with Only Double Precision
The nearest neighbor transform of a binary image assigns to each pixel the index of the nearest black pixel - it is the discrete analog of the Voronoi diagram. Implementations that compute the transform use numerical calculations to perform geometric tests, so they may produce erroneous results if t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | |
container_start_page | 66 |
container_title | |
container_volume | |
creator | Millman, D. L. Love, S. Chan, T. M. Snoeyink, J. |
description | The nearest neighbor transform of a binary image assigns to each pixel the index of the nearest black pixel - it is the discrete analog of the Voronoi diagram. Implementations that compute the transform use numerical calculations to perform geometric tests, so they may produce erroneous results if the calculations require more arithmetic precision than is available. Liotta, Preparata, and Tamassia, in 1999, suggested designing algorithms that not only minimize time and space resources, but also arithmetic precision. A simple algorithm using double precision can compute the nearest neighbor transform: compare the squared distances of each pixel to all black pixels, but this is inefficient when many pixels are black. We develop and implement efficient algorithms, computing the nearest neighbor transform of an image in linear time with respect to the number of pixels, while still using only double precision. |
doi_str_mv | 10.1109/ISVD.2012.13 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6257658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6257658</ieee_id><sourcerecordid>6257658</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-abacd37dd487f032e85e935a00c519d7f34ae543811f24b5a69619dcf7cfcf313</originalsourceid><addsrcrecordid>eNotjLtOwzAYRo0QErR0Y2PxCyT49yWOR9QWqKgoEhFr5Th2Y5RLZbuCvj2R4Czn6Bs-hO6A5ABEPWw-Plc5JUBzYBdoRmShBJeUq0s0A15IBgoIv0aLGL_IhCyBcXWDXpdjfzwlPxxwai1-szrYmCb7Q1uPAVdBD9GNocfrH21Sd8bfPrV4N0y1Gk91Z_F7sMZHPw636MrpLtrFv-eoelpXy5dsu3veLB-3mVckZbrWpmGyaXgpHWHUlsIqJjQhRoBqpGNcW8FZCeAor4UuVDHtxknjjGPA5uj-79Zba_fH4HsdzvuCClmIkv0CqQBM-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computing the Nearest Neighbor Transform Exactly with Only Double Precision</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Millman, D. L. ; Love, S. ; Chan, T. M. ; Snoeyink, J.</creator><creatorcontrib>Millman, D. L. ; Love, S. ; Chan, T. M. ; Snoeyink, J.</creatorcontrib><description>The nearest neighbor transform of a binary image assigns to each pixel the index of the nearest black pixel - it is the discrete analog of the Voronoi diagram. Implementations that compute the transform use numerical calculations to perform geometric tests, so they may produce erroneous results if the calculations require more arithmetic precision than is available. Liotta, Preparata, and Tamassia, in 1999, suggested designing algorithms that not only minimize time and space resources, but also arithmetic precision. A simple algorithm using double precision can compute the nearest neighbor transform: compare the squared distances of each pixel to all black pixels, but this is inefficient when many pixels are black. We develop and implement efficient algorithms, computing the nearest neighbor transform of an image in linear time with respect to the number of pixels, while still using only double precision.</description><identifier>ISBN: 1467319104</identifier><identifier>ISBN: 9781467319102</identifier><identifier>EISBN: 0769547249</identifier><identifier>EISBN: 9780769547244</identifier><identifier>DOI: 10.1109/ISVD.2012.13</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Arithmetic precision ; Computational geometry ; Computer science ; Degree-driven analysis of algorithms ; Distance transform ; Graphics processing unit ; Image processing ; Indexes ; Polynomials ; Transforms</subject><ispartof>2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering, 2012, p.66-74</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6257658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6257658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Millman, D. L.</creatorcontrib><creatorcontrib>Love, S.</creatorcontrib><creatorcontrib>Chan, T. M.</creatorcontrib><creatorcontrib>Snoeyink, J.</creatorcontrib><title>Computing the Nearest Neighbor Transform Exactly with Only Double Precision</title><title>2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering</title><addtitle>isvd</addtitle><description>The nearest neighbor transform of a binary image assigns to each pixel the index of the nearest black pixel - it is the discrete analog of the Voronoi diagram. Implementations that compute the transform use numerical calculations to perform geometric tests, so they may produce erroneous results if the calculations require more arithmetic precision than is available. Liotta, Preparata, and Tamassia, in 1999, suggested designing algorithms that not only minimize time and space resources, but also arithmetic precision. A simple algorithm using double precision can compute the nearest neighbor transform: compare the squared distances of each pixel to all black pixels, but this is inefficient when many pixels are black. We develop and implement efficient algorithms, computing the nearest neighbor transform of an image in linear time with respect to the number of pixels, while still using only double precision.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Arithmetic precision</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Degree-driven analysis of algorithms</subject><subject>Distance transform</subject><subject>Graphics processing unit</subject><subject>Image processing</subject><subject>Indexes</subject><subject>Polynomials</subject><subject>Transforms</subject><isbn>1467319104</isbn><isbn>9781467319102</isbn><isbn>0769547249</isbn><isbn>9780769547244</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAYRo0QErR0Y2PxCyT49yWOR9QWqKgoEhFr5Th2Y5RLZbuCvj2R4Czn6Bs-hO6A5ABEPWw-Plc5JUBzYBdoRmShBJeUq0s0A15IBgoIv0aLGL_IhCyBcXWDXpdjfzwlPxxwai1-szrYmCb7Q1uPAVdBD9GNocfrH21Sd8bfPrV4N0y1Gk91Z_F7sMZHPw636MrpLtrFv-eoelpXy5dsu3veLB-3mVckZbrWpmGyaXgpHWHUlsIqJjQhRoBqpGNcW8FZCeAor4UuVDHtxknjjGPA5uj-79Zba_fH4HsdzvuCClmIkv0CqQBM-g</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Millman, D. L.</creator><creator>Love, S.</creator><creator>Chan, T. M.</creator><creator>Snoeyink, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Computing the Nearest Neighbor Transform Exactly with Only Double Precision</title><author>Millman, D. L. ; Love, S. ; Chan, T. M. ; Snoeyink, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-abacd37dd487f032e85e935a00c519d7f34ae543811f24b5a69619dcf7cfcf313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Arithmetic precision</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Degree-driven analysis of algorithms</topic><topic>Distance transform</topic><topic>Graphics processing unit</topic><topic>Image processing</topic><topic>Indexes</topic><topic>Polynomials</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Millman, D. L.</creatorcontrib><creatorcontrib>Love, S.</creatorcontrib><creatorcontrib>Chan, T. M.</creatorcontrib><creatorcontrib>Snoeyink, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Millman, D. L.</au><au>Love, S.</au><au>Chan, T. M.</au><au>Snoeyink, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computing the Nearest Neighbor Transform Exactly with Only Double Precision</atitle><btitle>2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering</btitle><stitle>isvd</stitle><date>2012-06</date><risdate>2012</risdate><spage>66</spage><epage>74</epage><pages>66-74</pages><isbn>1467319104</isbn><isbn>9781467319102</isbn><eisbn>0769547249</eisbn><eisbn>9780769547244</eisbn><coden>IEEPAD</coden><abstract>The nearest neighbor transform of a binary image assigns to each pixel the index of the nearest black pixel - it is the discrete analog of the Voronoi diagram. Implementations that compute the transform use numerical calculations to perform geometric tests, so they may produce erroneous results if the calculations require more arithmetic precision than is available. Liotta, Preparata, and Tamassia, in 1999, suggested designing algorithms that not only minimize time and space resources, but also arithmetic precision. A simple algorithm using double precision can compute the nearest neighbor transform: compare the squared distances of each pixel to all black pixels, but this is inefficient when many pixels are black. We develop and implement efficient algorithms, computing the nearest neighbor transform of an image in linear time with respect to the number of pixels, while still using only double precision.</abstract><pub>IEEE</pub><doi>10.1109/ISVD.2012.13</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467319104 |
ispartof | 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering, 2012, p.66-74 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6257658 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Approximation algorithms Arithmetic precision Computational geometry Computer science Degree-driven analysis of algorithms Distance transform Graphics processing unit Image processing Indexes Polynomials Transforms |
title | Computing the Nearest Neighbor Transform Exactly with Only Double Precision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computing%20the%20Nearest%20Neighbor%20Transform%20Exactly%20with%20Only%20Double%20Precision&rft.btitle=2012%20Ninth%20International%20Symposium%20on%20Voronoi%20Diagrams%20in%20Science%20and%20Engineering&rft.au=Millman,%20D.%20L.&rft.date=2012-06&rft.spage=66&rft.epage=74&rft.pages=66-74&rft.isbn=1467319104&rft.isbn_list=9781467319102&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISVD.2012.13&rft_dat=%3Cieee_6IE%3E6257658%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769547249&rft.eisbn_list=9780769547244&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6257658&rfr_iscdi=true |