Opposition-based adaptive differential evolution
Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xin Zhang Shiu Yin Yuen |
description | Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size. |
doi_str_mv | 10.1109/CEC.2012.6256445 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6256445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6256445</ieee_id><sourcerecordid>6256445</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-747ee2e989a22249004a87475ea524bc57d9429892f7f87f395b2d14a0131dc53</originalsourceid><addsrcrecordid>eNo9j09Lw0AQxdd_YK29C176BRJnJruZ3aOEVoVCLwreyqY7CyuxCUks-O2NWHyXB-_3ZuApdYeQI4J7qFZVToCUl2RKrc2ZukFdcoEGLJ-rGTqNGQCVF_9gOrucAFiXMdv3a7UYhg-YxBZR80zBtuvaIY2pPWS1HyQsffDdmI6yDClG6eUwJt8s5dg2X7-tW3UVfTPI4uRz9bZevVbP2Wb79FI9brKEbMaMNYuQOOs8EWkHoL2dQiPekK73hoPTNGGKHC3HwpmaAmoPWGDYm2Ku7v_-JhHZdX369P337rS8-AGd8Ubi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Opposition-based adaptive differential evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xin Zhang ; Shiu Yin Yuen</creator><creatorcontrib>Xin Zhang ; Shiu Yin Yuen</creatorcontrib><description>Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1467315109</identifier><identifier>ISBN: 9781467315104</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1467315087</identifier><identifier>EISBN: 9781467315081</identifier><identifier>EISBN: 1467315095</identifier><identifier>EISBN: 9781467315098</identifier><identifier>DOI: 10.1109/CEC.2012.6256445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Convergence ; Evolutionary computation ; Indexes ; Optimization ; Vectors</subject><ispartof>2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6256445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6256445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Shiu Yin Yuen</creatorcontrib><title>Opposition-based adaptive differential evolution</title><title>2012 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.</description><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Evolutionary computation</subject><subject>Indexes</subject><subject>Optimization</subject><subject>Vectors</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1467315109</isbn><isbn>9781467315104</isbn><isbn>1467315087</isbn><isbn>9781467315081</isbn><isbn>1467315095</isbn><isbn>9781467315098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j09Lw0AQxdd_YK29C176BRJnJruZ3aOEVoVCLwreyqY7CyuxCUks-O2NWHyXB-_3ZuApdYeQI4J7qFZVToCUl2RKrc2ZukFdcoEGLJ-rGTqNGQCVF_9gOrucAFiXMdv3a7UYhg-YxBZR80zBtuvaIY2pPWS1HyQsffDdmI6yDClG6eUwJt8s5dg2X7-tW3UVfTPI4uRz9bZevVbP2Wb79FI9brKEbMaMNYuQOOs8EWkHoL2dQiPekK73hoPTNGGKHC3HwpmaAmoPWGDYm2Ku7v_-JhHZdX369P337rS8-AGd8Ubi</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Xin Zhang</creator><creator>Shiu Yin Yuen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Opposition-based adaptive differential evolution</title><author>Xin Zhang ; Shiu Yin Yuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-747ee2e989a22249004a87475ea524bc57d9429892f7f87f395b2d14a0131dc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Evolutionary computation</topic><topic>Indexes</topic><topic>Optimization</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Shiu Yin Yuen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin Zhang</au><au>Shiu Yin Yuen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Opposition-based adaptive differential evolution</atitle><btitle>2012 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1467315109</isbn><isbn>9781467315104</isbn><eisbn>1467315087</eisbn><eisbn>9781467315081</eisbn><eisbn>1467315095</eisbn><eisbn>9781467315098</eisbn><abstract>Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2012.6256445</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6256445 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Convergence Evolutionary computation Indexes Optimization Vectors |
title | Opposition-based adaptive differential evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Opposition-based%20adaptive%20differential%20evolution&rft.btitle=2012%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Xin%20Zhang&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1467315109&rft.isbn_list=9781467315104&rft_id=info:doi/10.1109/CEC.2012.6256445&rft_dat=%3Cieee_6IE%3E6256445%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315087&rft.eisbn_list=9781467315081&rft.eisbn_list=1467315095&rft.eisbn_list=9781467315098&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6256445&rfr_iscdi=true |