Opposition-based adaptive differential evolution

Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xin Zhang, Shiu Yin Yuen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Xin Zhang
Shiu Yin Yuen
description Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.
doi_str_mv 10.1109/CEC.2012.6256445
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6256445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6256445</ieee_id><sourcerecordid>6256445</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-747ee2e989a22249004a87475ea524bc57d9429892f7f87f395b2d14a0131dc53</originalsourceid><addsrcrecordid>eNo9j09Lw0AQxdd_YK29C176BRJnJruZ3aOEVoVCLwreyqY7CyuxCUks-O2NWHyXB-_3ZuApdYeQI4J7qFZVToCUl2RKrc2ZukFdcoEGLJ-rGTqNGQCVF_9gOrucAFiXMdv3a7UYhg-YxBZR80zBtuvaIY2pPWS1HyQsffDdmI6yDClG6eUwJt8s5dg2X7-tW3UVfTPI4uRz9bZevVbP2Wb79FI9brKEbMaMNYuQOOs8EWkHoL2dQiPekK73hoPTNGGKHC3HwpmaAmoPWGDYm2Ku7v_-JhHZdX369P337rS8-AGd8Ubi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Opposition-based adaptive differential evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xin Zhang ; Shiu Yin Yuen</creator><creatorcontrib>Xin Zhang ; Shiu Yin Yuen</creatorcontrib><description>Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1467315109</identifier><identifier>ISBN: 9781467315104</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1467315087</identifier><identifier>EISBN: 9781467315081</identifier><identifier>EISBN: 1467315095</identifier><identifier>EISBN: 9781467315098</identifier><identifier>DOI: 10.1109/CEC.2012.6256445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Convergence ; Evolutionary computation ; Indexes ; Optimization ; Vectors</subject><ispartof>2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6256445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6256445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Shiu Yin Yuen</creatorcontrib><title>Opposition-based adaptive differential evolution</title><title>2012 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.</description><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Evolutionary computation</subject><subject>Indexes</subject><subject>Optimization</subject><subject>Vectors</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1467315109</isbn><isbn>9781467315104</isbn><isbn>1467315087</isbn><isbn>9781467315081</isbn><isbn>1467315095</isbn><isbn>9781467315098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j09Lw0AQxdd_YK29C176BRJnJruZ3aOEVoVCLwreyqY7CyuxCUks-O2NWHyXB-_3ZuApdYeQI4J7qFZVToCUl2RKrc2ZukFdcoEGLJ-rGTqNGQCVF_9gOrucAFiXMdv3a7UYhg-YxBZR80zBtuvaIY2pPWS1HyQsffDdmI6yDClG6eUwJt8s5dg2X7-tW3UVfTPI4uRz9bZevVbP2Wb79FI9brKEbMaMNYuQOOs8EWkHoL2dQiPekK73hoPTNGGKHC3HwpmaAmoPWGDYm2Ku7v_-JhHZdX369P337rS8-AGd8Ubi</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Xin Zhang</creator><creator>Shiu Yin Yuen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Opposition-based adaptive differential evolution</title><author>Xin Zhang ; Shiu Yin Yuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-747ee2e989a22249004a87475ea524bc57d9429892f7f87f395b2d14a0131dc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Evolutionary computation</topic><topic>Indexes</topic><topic>Optimization</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Shiu Yin Yuen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin Zhang</au><au>Shiu Yin Yuen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Opposition-based adaptive differential evolution</atitle><btitle>2012 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1467315109</isbn><isbn>9781467315104</isbn><eisbn>1467315087</eisbn><eisbn>9781467315081</eisbn><eisbn>1467315095</eisbn><eisbn>9781467315098</eisbn><abstract>Differential evolution (DE) is a simple and efficient evolutionary algorithm. It contains three parameters which need to be predefined by users. These parameters are sensitive to specific problems and difficult to set. Opposition-based computing (OBC) is a new scheme for computational intelligence. OBC is helpful to existing techniques by making better decisions through simultaneous consideration of entities and opposite entities. The opposition phenomenon exists in the literature concerning parameter control of DE. In this paper, OBC is employed to assist with the solving of parameter control problem in DE. Employing OBC to parameter control problem in DE has not been reported previously to our knowledge. The proposed approach is called opposition-based adaptive DE (OADE). It uses two pools to respectively store parameters and opposite parameters. The parameters and their opposites are used at the same time to generate trial vectors in DE. During the evolutionary process, fitness improvement at a generation serves as a filter to detect proper parameters for optimization problems. The detected proper parameters and their opposites are stored in pools, whereas the improper parameters and their opposites are replaced by new randomly generated ones. The utilization of parameters and their opposites can balance the exploration and exploitation behavior of DE in one generation. The performance of OADE is compared with three other DE algorithms. The experimental results show that OADE significantly outperforms the benchmark algorithms. Moreover, OADE is not sensitive to the pool size.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2012.6256445</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6256445
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Convergence
Evolutionary computation
Indexes
Optimization
Vectors
title Opposition-based adaptive differential evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Opposition-based%20adaptive%20differential%20evolution&rft.btitle=2012%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Xin%20Zhang&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1467315109&rft.isbn_list=9781467315104&rft_id=info:doi/10.1109/CEC.2012.6256445&rft_dat=%3Cieee_6IE%3E6256445%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315087&rft.eisbn_list=9781467315081&rft.eisbn_list=1467315095&rft.eisbn_list=9781467315098&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6256445&rfr_iscdi=true