Improved face recognition method based on segmentation algorithm using SIFT-PCA

This paper provides an example of the face recognition using SIFT-PCA method and impact of Graph Based segmentation algorithm on recognition rate. Principle component analysis (PCA) is a multivariate technique that analyzes a face data in which observation are described by several inter-correlated d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kamencay, P., Breznan, M., Jelsovka, D., Zachariasova, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue
container_start_page 758
container_title
container_volume
creator Kamencay, P.
Breznan, M.
Jelsovka, D.
Zachariasova, M.
description This paper provides an example of the face recognition using SIFT-PCA method and impact of Graph Based segmentation algorithm on recognition rate. Principle component analysis (PCA) is a multivariate technique that analyzes a face data in which observation are described by several inter-correlated dependent variables. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. The paper presents a proposed methodology for face recognition based on preprocessing face images using segmentation algorithm and SIFT (Scale Invariant Feature Transform) descriptor. The algorithm has been tested on 50 subjects (100 images). The proposed method first was tested on ESSEX face database and next on own segmented face database using SIFT-PCA. The experimental result shows that the segmentation in combination with SIFT-PCA has a positive effect for face recognition and accelerates the recognition PCA technique.
doi_str_mv 10.1109/TSP.2012.6256399
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6256399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6256399</ieee_id><sourcerecordid>6256399</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-95c3482e7829b4dfff9b6508a347b6a1bea6b16a2f1c1f82993185dc69cf868a3</originalsourceid><addsrcrecordid>eNo1kFFLwzAUhSMiqLPvgi_5A529SZM2j6M4LQw2WH0eSXrTRdZ2NFXw3xt03pfDOd_hcrmEPEK2BMjUc7PfLVkGbCmZkFypK3IPuSw4AEh2TRJVlP--ELckCeEjixNTJsUd2db9eRq_sKVOW6QT2rEb_OzHgfY4H8eWGh0ijT5g1-Mw61-oT904-fnY08_gh47u63WT7qrVA7lx-hQwueiCvK9fmuot3Wxf62q1SX08Y06VsDwvGRYlUyZvnXPKSJGVmueFkRoMamlAaubAgoslxaEUrZXKulLG2oI8_e31iHg4T77X0_fh8gP-A60AT24</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved face recognition method based on segmentation algorithm using SIFT-PCA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kamencay, P. ; Breznan, M. ; Jelsovka, D. ; Zachariasova, M.</creator><creatorcontrib>Kamencay, P. ; Breznan, M. ; Jelsovka, D. ; Zachariasova, M.</creatorcontrib><description>This paper provides an example of the face recognition using SIFT-PCA method and impact of Graph Based segmentation algorithm on recognition rate. Principle component analysis (PCA) is a multivariate technique that analyzes a face data in which observation are described by several inter-correlated dependent variables. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. The paper presents a proposed methodology for face recognition based on preprocessing face images using segmentation algorithm and SIFT (Scale Invariant Feature Transform) descriptor. The algorithm has been tested on 50 subjects (100 images). The proposed method first was tested on ESSEX face database and next on own segmented face database using SIFT-PCA. The experimental result shows that the segmentation in combination with SIFT-PCA has a positive effect for face recognition and accelerates the recognition PCA technique.</description><identifier>ISBN: 9781467311175</identifier><identifier>ISBN: 1467311170</identifier><identifier>EISBN: 1467311162</identifier><identifier>EISBN: 9781467311168</identifier><identifier>EISBN: 9781467311182</identifier><identifier>EISBN: 1467311189</identifier><identifier>DOI: 10.1109/TSP.2012.6256399</identifier><language>eng</language><publisher>IEEE</publisher><subject>ESSEX database ; Face ; Face recognition ; Feature extraction ; Graph Based Segmentation ; Image segmentation ; PCA ; Principal component analysis ; SIFT ; Vectors</subject><ispartof>2012 35th International Conference on Telecommunications and Signal Processing (TSP), 2012, p.758-762</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6256399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6256399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamencay, P.</creatorcontrib><creatorcontrib>Breznan, M.</creatorcontrib><creatorcontrib>Jelsovka, D.</creatorcontrib><creatorcontrib>Zachariasova, M.</creatorcontrib><title>Improved face recognition method based on segmentation algorithm using SIFT-PCA</title><title>2012 35th International Conference on Telecommunications and Signal Processing (TSP)</title><addtitle>TSP</addtitle><description>This paper provides an example of the face recognition using SIFT-PCA method and impact of Graph Based segmentation algorithm on recognition rate. Principle component analysis (PCA) is a multivariate technique that analyzes a face data in which observation are described by several inter-correlated dependent variables. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. The paper presents a proposed methodology for face recognition based on preprocessing face images using segmentation algorithm and SIFT (Scale Invariant Feature Transform) descriptor. The algorithm has been tested on 50 subjects (100 images). The proposed method first was tested on ESSEX face database and next on own segmented face database using SIFT-PCA. The experimental result shows that the segmentation in combination with SIFT-PCA has a positive effect for face recognition and accelerates the recognition PCA technique.</description><subject>ESSEX database</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Graph Based Segmentation</subject><subject>Image segmentation</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>SIFT</subject><subject>Vectors</subject><isbn>9781467311175</isbn><isbn>1467311170</isbn><isbn>1467311162</isbn><isbn>9781467311168</isbn><isbn>9781467311182</isbn><isbn>1467311189</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kFFLwzAUhSMiqLPvgi_5A529SZM2j6M4LQw2WH0eSXrTRdZ2NFXw3xt03pfDOd_hcrmEPEK2BMjUc7PfLVkGbCmZkFypK3IPuSw4AEh2TRJVlP--ELckCeEjixNTJsUd2db9eRq_sKVOW6QT2rEb_OzHgfY4H8eWGh0ijT5g1-Mw61-oT904-fnY08_gh47u63WT7qrVA7lx-hQwueiCvK9fmuot3Wxf62q1SX08Y06VsDwvGRYlUyZvnXPKSJGVmueFkRoMamlAaubAgoslxaEUrZXKulLG2oI8_e31iHg4T77X0_fh8gP-A60AT24</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Kamencay, P.</creator><creator>Breznan, M.</creator><creator>Jelsovka, D.</creator><creator>Zachariasova, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Improved face recognition method based on segmentation algorithm using SIFT-PCA</title><author>Kamencay, P. ; Breznan, M. ; Jelsovka, D. ; Zachariasova, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-95c3482e7829b4dfff9b6508a347b6a1bea6b16a2f1c1f82993185dc69cf868a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ESSEX database</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Graph Based Segmentation</topic><topic>Image segmentation</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>SIFT</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamencay, P.</creatorcontrib><creatorcontrib>Breznan, M.</creatorcontrib><creatorcontrib>Jelsovka, D.</creatorcontrib><creatorcontrib>Zachariasova, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamencay, P.</au><au>Breznan, M.</au><au>Jelsovka, D.</au><au>Zachariasova, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved face recognition method based on segmentation algorithm using SIFT-PCA</atitle><btitle>2012 35th International Conference on Telecommunications and Signal Processing (TSP)</btitle><stitle>TSP</stitle><date>2012-07</date><risdate>2012</risdate><spage>758</spage><epage>762</epage><pages>758-762</pages><isbn>9781467311175</isbn><isbn>1467311170</isbn><eisbn>1467311162</eisbn><eisbn>9781467311168</eisbn><eisbn>9781467311182</eisbn><eisbn>1467311189</eisbn><abstract>This paper provides an example of the face recognition using SIFT-PCA method and impact of Graph Based segmentation algorithm on recognition rate. Principle component analysis (PCA) is a multivariate technique that analyzes a face data in which observation are described by several inter-correlated dependent variables. The goal is to extract the important information from the face data, to represent it as a set of new orthogonal variables called principal components. The paper presents a proposed methodology for face recognition based on preprocessing face images using segmentation algorithm and SIFT (Scale Invariant Feature Transform) descriptor. The algorithm has been tested on 50 subjects (100 images). The proposed method first was tested on ESSEX face database and next on own segmented face database using SIFT-PCA. The experimental result shows that the segmentation in combination with SIFT-PCA has a positive effect for face recognition and accelerates the recognition PCA technique.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2012.6256399</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467311175
ispartof 2012 35th International Conference on Telecommunications and Signal Processing (TSP), 2012, p.758-762
issn
language eng
recordid cdi_ieee_primary_6256399
source IEEE Electronic Library (IEL) Conference Proceedings
subjects ESSEX database
Face
Face recognition
Feature extraction
Graph Based Segmentation
Image segmentation
PCA
Principal component analysis
SIFT
Vectors
title Improved face recognition method based on segmentation algorithm using SIFT-PCA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20face%20recognition%20method%20based%20on%20segmentation%20algorithm%20using%20SIFT-PCA&rft.btitle=2012%2035th%20International%20Conference%20on%20Telecommunications%20and%20Signal%20Processing%20(TSP)&rft.au=Kamencay,%20P.&rft.date=2012-07&rft.spage=758&rft.epage=762&rft.pages=758-762&rft.isbn=9781467311175&rft.isbn_list=1467311170&rft_id=info:doi/10.1109/TSP.2012.6256399&rft_dat=%3Cieee_6IE%3E6256399%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467311162&rft.eisbn_list=9781467311168&rft.eisbn_list=9781467311182&rft.eisbn_list=1467311189&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6256399&rfr_iscdi=true