Comparison study of controlling bloat model of GP in constructing filter for cell image segmentation problems

The final goal of this research is to construct a cell image analysis system for supporting corneal regenerative medicine. Existing image analysis software requires knowledge about image processing of users because users have to combine several image processing on its analysis. Therefore, several ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yamaguchi, H., Hiroyasu, T., Nunokawa, S., Koizumi, N., Okumura, N., Yokouchi, H., Miki, M., Yoshimi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Yamaguchi, H.
Hiroyasu, T.
Nunokawa, S.
Koizumi, N.
Okumura, N.
Yokouchi, H.
Miki, M.
Yoshimi, M.
description The final goal of this research is to construct a cell image analysis system for supporting corneal regenerative medicine. Existing image analysis software requires knowledge about image processing of users because users have to combine several image processing on its analysis. Therefore, several types of methods to construct the objective image processing automatically using genetic programming (GP) have been proposed. However, in conventional researches, only canonical GP models were utilized. In this paper, GP models suited to cell image segmentation are investigated applying proposed controlling bloat model of GP. Applied models were six types in addition to the canonical model; those are Double Tournament, Tarpeian, Non-Destructive Crossover (NDC), Recombinative Hill-Climbing (RHC), Spatial Structure + Elitism (SS+E). The combination of image processing obtained by these GP models and the robustness are examined by comparative experiments, using corned endothelium cell image. The experiment results showed that SS+E is superior to other models in both robustness and image processing constructed for cell image segmentation, without depending on parameters of tree depth limit and penalty.
doi_str_mv 10.1109/CEC.2012.6252995
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6252995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6252995</ieee_id><sourcerecordid>6252995</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-610f67eb303cf390c8a556feab999ca8cb12d6b9ecf56b5a2ab64a5c1d50c2a53</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxOM_sNbeBS_5Alvzsptkc5SlVqGgBwVvJckmJZLdlCQ99Nu7xeK7zOE3MzwGoQcgSwAin7pVt6QE6JJTRqVkF-gOGi5qYKQVl2gGsoGKEMqv_sEUu54AaWUlRPt9ixY5_5DpRAvQiBkaujjsVfI5jjiXQ3_E0WETx5JiCH7cYR2iKniIvQ0ntP7AfjwZckkHU04O50OxCbuYsLEhYD-oncXZ7gY7FlX81LxPUQc75Ht041TIdnHWOfp6WX12r9Xmff3WPW8qD4KVigNxXFhdk9q4WhLTKsa4s0pLKY1qjQbacy2tcYxrpqjSvFHMQM-IoYrVc_T41-uttdt9ml5Kx-15tvoX8y9fVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison study of controlling bloat model of GP in constructing filter for cell image segmentation problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yamaguchi, H. ; Hiroyasu, T. ; Nunokawa, S. ; Koizumi, N. ; Okumura, N. ; Yokouchi, H. ; Miki, M. ; Yoshimi, M.</creator><creatorcontrib>Yamaguchi, H. ; Hiroyasu, T. ; Nunokawa, S. ; Koizumi, N. ; Okumura, N. ; Yokouchi, H. ; Miki, M. ; Yoshimi, M.</creatorcontrib><description>The final goal of this research is to construct a cell image analysis system for supporting corneal regenerative medicine. Existing image analysis software requires knowledge about image processing of users because users have to combine several image processing on its analysis. Therefore, several types of methods to construct the objective image processing automatically using genetic programming (GP) have been proposed. However, in conventional researches, only canonical GP models were utilized. In this paper, GP models suited to cell image segmentation are investigated applying proposed controlling bloat model of GP. Applied models were six types in addition to the canonical model; those are Double Tournament, Tarpeian, Non-Destructive Crossover (NDC), Recombinative Hill-Climbing (RHC), Spatial Structure + Elitism (SS+E). The combination of image processing obtained by these GP models and the robustness are examined by comparative experiments, using corned endothelium cell image. The experiment results showed that SS+E is superior to other models in both robustness and image processing constructed for cell image segmentation, without depending on parameters of tree depth limit and penalty.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1467315109</identifier><identifier>ISBN: 9781467315104</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1467315087</identifier><identifier>EISBN: 9781467315081</identifier><identifier>EISBN: 1467315095</identifier><identifier>EISBN: 9781467315098</identifier><identifier>DOI: 10.1109/CEC.2012.6252995</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Computational modeling ; Genetic programming ; Image segmentation ; Mathematical model ; Robustness</subject><ispartof>2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6252995$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,793,2052,27906,54739,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6252995$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>Hiroyasu, T.</creatorcontrib><creatorcontrib>Nunokawa, S.</creatorcontrib><creatorcontrib>Koizumi, N.</creatorcontrib><creatorcontrib>Okumura, N.</creatorcontrib><creatorcontrib>Yokouchi, H.</creatorcontrib><creatorcontrib>Miki, M.</creatorcontrib><creatorcontrib>Yoshimi, M.</creatorcontrib><title>Comparison study of controlling bloat model of GP in constructing filter for cell image segmentation problems</title><title>2012 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>The final goal of this research is to construct a cell image analysis system for supporting corneal regenerative medicine. Existing image analysis software requires knowledge about image processing of users because users have to combine several image processing on its analysis. Therefore, several types of methods to construct the objective image processing automatically using genetic programming (GP) have been proposed. However, in conventional researches, only canonical GP models were utilized. In this paper, GP models suited to cell image segmentation are investigated applying proposed controlling bloat model of GP. Applied models were six types in addition to the canonical model; those are Double Tournament, Tarpeian, Non-Destructive Crossover (NDC), Recombinative Hill-Climbing (RHC), Spatial Structure + Elitism (SS+E). The combination of image processing obtained by these GP models and the robustness are examined by comparative experiments, using corned endothelium cell image. The experiment results showed that SS+E is superior to other models in both robustness and image processing constructed for cell image segmentation, without depending on parameters of tree depth limit and penalty.</description><subject>Biomedical imaging</subject><subject>Computational modeling</subject><subject>Genetic programming</subject><subject>Image segmentation</subject><subject>Mathematical model</subject><subject>Robustness</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1467315109</isbn><isbn>9781467315104</isbn><isbn>1467315087</isbn><isbn>9781467315081</isbn><isbn>1467315095</isbn><isbn>9781467315098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEUxOM_sNbeBS_5Alvzsptkc5SlVqGgBwVvJckmJZLdlCQ99Nu7xeK7zOE3MzwGoQcgSwAin7pVt6QE6JJTRqVkF-gOGi5qYKQVl2gGsoGKEMqv_sEUu54AaWUlRPt9ixY5_5DpRAvQiBkaujjsVfI5jjiXQ3_E0WETx5JiCH7cYR2iKniIvQ0ntP7AfjwZckkHU04O50OxCbuYsLEhYD-oncXZ7gY7FlX81LxPUQc75Ht041TIdnHWOfp6WX12r9Xmff3WPW8qD4KVigNxXFhdk9q4WhLTKsa4s0pLKY1qjQbacy2tcYxrpqjSvFHMQM-IoYrVc_T41-uttdt9ml5Kx-15tvoX8y9fVA</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Yamaguchi, H.</creator><creator>Hiroyasu, T.</creator><creator>Nunokawa, S.</creator><creator>Koizumi, N.</creator><creator>Okumura, N.</creator><creator>Yokouchi, H.</creator><creator>Miki, M.</creator><creator>Yoshimi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Comparison study of controlling bloat model of GP in constructing filter for cell image segmentation problems</title><author>Yamaguchi, H. ; Hiroyasu, T. ; Nunokawa, S. ; Koizumi, N. ; Okumura, N. ; Yokouchi, H. ; Miki, M. ; Yoshimi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-610f67eb303cf390c8a556feab999ca8cb12d6b9ecf56b5a2ab64a5c1d50c2a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biomedical imaging</topic><topic>Computational modeling</topic><topic>Genetic programming</topic><topic>Image segmentation</topic><topic>Mathematical model</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, H.</creatorcontrib><creatorcontrib>Hiroyasu, T.</creatorcontrib><creatorcontrib>Nunokawa, S.</creatorcontrib><creatorcontrib>Koizumi, N.</creatorcontrib><creatorcontrib>Okumura, N.</creatorcontrib><creatorcontrib>Yokouchi, H.</creatorcontrib><creatorcontrib>Miki, M.</creatorcontrib><creatorcontrib>Yoshimi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamaguchi, H.</au><au>Hiroyasu, T.</au><au>Nunokawa, S.</au><au>Koizumi, N.</au><au>Okumura, N.</au><au>Yokouchi, H.</au><au>Miki, M.</au><au>Yoshimi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison study of controlling bloat model of GP in constructing filter for cell image segmentation problems</atitle><btitle>2012 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1467315109</isbn><isbn>9781467315104</isbn><eisbn>1467315087</eisbn><eisbn>9781467315081</eisbn><eisbn>1467315095</eisbn><eisbn>9781467315098</eisbn><abstract>The final goal of this research is to construct a cell image analysis system for supporting corneal regenerative medicine. Existing image analysis software requires knowledge about image processing of users because users have to combine several image processing on its analysis. Therefore, several types of methods to construct the objective image processing automatically using genetic programming (GP) have been proposed. However, in conventional researches, only canonical GP models were utilized. In this paper, GP models suited to cell image segmentation are investigated applying proposed controlling bloat model of GP. Applied models were six types in addition to the canonical model; those are Double Tournament, Tarpeian, Non-Destructive Crossover (NDC), Recombinative Hill-Climbing (RHC), Spatial Structure + Elitism (SS+E). The combination of image processing obtained by these GP models and the robustness are examined by comparative experiments, using corned endothelium cell image. The experiment results showed that SS+E is superior to other models in both robustness and image processing constructed for cell image segmentation, without depending on parameters of tree depth limit and penalty.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2012.6252995</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6252995
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Computational modeling
Genetic programming
Image segmentation
Mathematical model
Robustness
title Comparison study of controlling bloat model of GP in constructing filter for cell image segmentation problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20study%20of%20controlling%20bloat%20model%20of%20GP%20in%20constructing%20filter%20for%20cell%20image%20segmentation%20problems&rft.btitle=2012%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Yamaguchi,%20H.&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1467315109&rft.isbn_list=9781467315104&rft_id=info:doi/10.1109/CEC.2012.6252995&rft_dat=%3Cieee_6IE%3E6252995%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315087&rft.eisbn_list=9781467315081&rft.eisbn_list=1467315095&rft.eisbn_list=9781467315098&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6252995&rfr_iscdi=true