ACOℝ-V - An algorithm that incorporates the visibility heuristic to the ACO in continuous domain

Ant Colony Optimization (ACO) is an optimization metaheuristic based on the foraging behavior of ants. This metaheuristic was originally proposed to find good solutions to discrete combinatorial problems. Many extensions of the ACO heuristic for continuous domain have been proposed, but even those t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Conti, C. R., Roisenberg, M., Neto, G. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Conti, C. R.
Roisenberg, M.
Neto, G. S.
description Ant Colony Optimization (ACO) is an optimization metaheuristic based on the foraging behavior of ants. This metaheuristic was originally proposed to find good solutions to discrete combinatorial problems. Many extensions of the ACO heuristic for continuous domain have been proposed, but even those that claim close similarity with classical (discrete domain) ACO, like ACOR, do not use the heuristic information called visibility, commonly used in the original ACO algorithm. In this paper, we show the importance of the visibility in ACO, by proposing ACO ℝ -V , a variant of ACOR that performs better in a number of benchmark functions. Results from our experiments shown better solutions when comparing ACO ℝ -V to original ACOR. Moreover, the visibility increased the convergence speed as it reduced the number of times the objective function must be evaluated for a given precision in the solution.
doi_str_mv 10.1109/CEC.2012.6252921
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6252921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6252921</ieee_id><sourcerecordid>6252921</sourcerecordid><originalsourceid>FETCH-ieee_primary_62529213</originalsourceid><addsrcrecordid>eNp9j81OwzAQhM2fRIHckbjsCzh43TSOj1XUihsXhLhVbjBkUWJXtoPUO6_By_EkWChn5jLSfLMrDWO3KEpEoe_bTVtKgbKs5UpqiSfsCqtaLXElGnXKFqgr5ELI-owVWjUzQ1GdZyYazZVqXi5ZEeOHyMoNrNSC7dft48_XN38GDmsHZnj3gVI_QupNAnKdDwcfTLIxJxY-KdKeBkpH6O0UKCbqIPk_lj_lA-i8S-QmP0V49aMhd8Mu3swQbTH7Nbvbbp7aB07W2t0h0GjCcTfPWv5PfwEiE0uK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ACOℝ-V - An algorithm that incorporates the visibility heuristic to the ACO in continuous domain</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Conti, C. R. ; Roisenberg, M. ; Neto, G. S.</creator><creatorcontrib>Conti, C. R. ; Roisenberg, M. ; Neto, G. S.</creatorcontrib><description>Ant Colony Optimization (ACO) is an optimization metaheuristic based on the foraging behavior of ants. This metaheuristic was originally proposed to find good solutions to discrete combinatorial problems. Many extensions of the ACO heuristic for continuous domain have been proposed, but even those that claim close similarity with classical (discrete domain) ACO, like ACOR, do not use the heuristic information called visibility, commonly used in the original ACO algorithm. In this paper, we show the importance of the visibility in ACO, by proposing ACO ℝ -V , a variant of ACOR that performs better in a number of benchmark functions. Results from our experiments shown better solutions when comparing ACO ℝ -V to original ACOR. Moreover, the visibility increased the convergence speed as it reduced the number of times the objective function must be evaluated for a given precision in the solution.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 9781467315104</identifier><identifier>ISBN: 1467315109</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1467315087</identifier><identifier>EISBN: 1467315095</identifier><identifier>EISBN: 9781467315081</identifier><identifier>EISBN: 9781467315098</identifier><identifier>DOI: 10.1109/CEC.2012.6252921</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant colony optimization ; Benchmark testing ; Cities and towns ; continuous domain ; Convergence ; convergence speed ; Equations ; heuristic ; Heuristic algorithms ; Optimization ; visibility</subject><ispartof>2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6252921$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6252921$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Conti, C. R.</creatorcontrib><creatorcontrib>Roisenberg, M.</creatorcontrib><creatorcontrib>Neto, G. S.</creatorcontrib><title>ACOℝ-V - An algorithm that incorporates the visibility heuristic to the ACO in continuous domain</title><title>2012 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Ant Colony Optimization (ACO) is an optimization metaheuristic based on the foraging behavior of ants. This metaheuristic was originally proposed to find good solutions to discrete combinatorial problems. Many extensions of the ACO heuristic for continuous domain have been proposed, but even those that claim close similarity with classical (discrete domain) ACO, like ACOR, do not use the heuristic information called visibility, commonly used in the original ACO algorithm. In this paper, we show the importance of the visibility in ACO, by proposing ACO ℝ -V , a variant of ACOR that performs better in a number of benchmark functions. Results from our experiments shown better solutions when comparing ACO ℝ -V to original ACOR. Moreover, the visibility increased the convergence speed as it reduced the number of times the objective function must be evaluated for a given precision in the solution.</description><subject>Ant colony optimization</subject><subject>Benchmark testing</subject><subject>Cities and towns</subject><subject>continuous domain</subject><subject>Convergence</subject><subject>convergence speed</subject><subject>Equations</subject><subject>heuristic</subject><subject>Heuristic algorithms</subject><subject>Optimization</subject><subject>visibility</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>9781467315104</isbn><isbn>1467315109</isbn><isbn>1467315087</isbn><isbn>1467315095</isbn><isbn>9781467315081</isbn><isbn>9781467315098</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j81OwzAQhM2fRIHckbjsCzh43TSOj1XUihsXhLhVbjBkUWJXtoPUO6_By_EkWChn5jLSfLMrDWO3KEpEoe_bTVtKgbKs5UpqiSfsCqtaLXElGnXKFqgr5ELI-owVWjUzQ1GdZyYazZVqXi5ZEeOHyMoNrNSC7dft48_XN38GDmsHZnj3gVI_QupNAnKdDwcfTLIxJxY-KdKeBkpH6O0UKCbqIPk_lj_lA-i8S-QmP0V49aMhd8Mu3swQbTH7Nbvbbp7aB07W2t0h0GjCcTfPWv5PfwEiE0uK</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Conti, C. R.</creator><creator>Roisenberg, M.</creator><creator>Neto, G. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>ACOℝ-V - An algorithm that incorporates the visibility heuristic to the ACO in continuous domain</title><author>Conti, C. R. ; Roisenberg, M. ; Neto, G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_62529213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ant colony optimization</topic><topic>Benchmark testing</topic><topic>Cities and towns</topic><topic>continuous domain</topic><topic>Convergence</topic><topic>convergence speed</topic><topic>Equations</topic><topic>heuristic</topic><topic>Heuristic algorithms</topic><topic>Optimization</topic><topic>visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conti, C. R.</creatorcontrib><creatorcontrib>Roisenberg, M.</creatorcontrib><creatorcontrib>Neto, G. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Conti, C. R.</au><au>Roisenberg, M.</au><au>Neto, G. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ACOℝ-V - An algorithm that incorporates the visibility heuristic to the ACO in continuous domain</atitle><btitle>2012 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>9781467315104</isbn><isbn>1467315109</isbn><eisbn>1467315087</eisbn><eisbn>1467315095</eisbn><eisbn>9781467315081</eisbn><eisbn>9781467315098</eisbn><abstract>Ant Colony Optimization (ACO) is an optimization metaheuristic based on the foraging behavior of ants. This metaheuristic was originally proposed to find good solutions to discrete combinatorial problems. Many extensions of the ACO heuristic for continuous domain have been proposed, but even those that claim close similarity with classical (discrete domain) ACO, like ACOR, do not use the heuristic information called visibility, commonly used in the original ACO algorithm. In this paper, we show the importance of the visibility in ACO, by proposing ACO ℝ -V , a variant of ACOR that performs better in a number of benchmark functions. Results from our experiments shown better solutions when comparing ACO ℝ -V to original ACOR. Moreover, the visibility increased the convergence speed as it reduced the number of times the objective function must be evaluated for a given precision in the solution.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2012.6252921</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2012 IEEE Congress on Evolutionary Computation, 2012, p.1-8
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6252921
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ant colony optimization
Benchmark testing
Cities and towns
continuous domain
Convergence
convergence speed
Equations
heuristic
Heuristic algorithms
Optimization
visibility
title ACOℝ-V - An algorithm that incorporates the visibility heuristic to the ACO in continuous domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ACO%E2%84%9D-V%20-%20An%20algorithm%20that%20incorporates%20the%20visibility%20heuristic%20to%20the%20ACO%20in%20continuous%20domain&rft.btitle=2012%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Conti,%20C.%20R.&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=9781467315104&rft.isbn_list=1467315109&rft_id=info:doi/10.1109/CEC.2012.6252921&rft_dat=%3Cieee_6IE%3E6252921%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315087&rft.eisbn_list=1467315095&rft.eisbn_list=9781467315081&rft.eisbn_list=9781467315098&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6252921&rfr_iscdi=true