On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches

In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the related literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in identification is that the gallery always...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yongkang Wong, Harandi, M. T., Sanderson, C., Lovell, B. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Yongkang Wong
Harandi, M. T.
Sanderson, C.
Lovell, B. C.
description In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the related literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in identification is that the gallery always has sufficient samples per subject to linearly reconstruct a query image. Unfortunately, such assumption is easily violated in the more challenging and realistic face verification scenario. A verification algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person, while explicitly taking into account the possibility of impostor attacks. In this paper, we first discuss why most of the SR literature is not applicable to verification problems. Motivated by the success of bag-of-words methods in the field of object recognition, which describe an image as a set of local patches or interest points, we then propose to tackle the verification problem by encoding each local face patch through SR. The locally encoded sparse vectors are pooled to form regional descriptors, where each descriptor covers a relatively large portion of the face. Experiments in various challenging conditions show that the proposed method achieves high and robust verification performance.
doi_str_mv 10.1109/IJCNN.2012.6252611
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6252611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6252611</ieee_id><sourcerecordid>6252611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-116d2bc488ff5c4ce7b670270bca25318c50873e7ab08747e848535441da1dbf3</originalsourceid><addsrcrecordid>eNpVUM1OAyEYxL_EpvYF9MILbOUDFlhvplFb07QXPTfAgmK2ywawSd_eTawH5zKH-clkELoFMgcgzf3qdbHZzCkBOhe0pgLgDM0aqYALyYCrhp2jCQUBFedEXvzTlLj801jDrtEs5y8yYnRQ4BPUbnucovnOBZsQ966kYHFoXV9COeKDS8EHq0uIPT4EjfOgU3bY9Ta2of_A0WOvrcsPeBm7kMsYPmTcRas7rIchRW0_Xb5BV1532c1OPEXvz09vi2W13r6sFo_rKlBoSgUgWmrsONr72nLrpBGSUEmM1bRmoGxNlGROajMyl05xVbOac2g1tMazKbr77Q3Oud2Qwl6n4-70GfsBNx9cRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yongkang Wong ; Harandi, M. T. ; Sanderson, C. ; Lovell, B. C.</creator><creatorcontrib>Yongkang Wong ; Harandi, M. T. ; Sanderson, C. ; Lovell, B. C.</creatorcontrib><description>In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the related literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in identification is that the gallery always has sufficient samples per subject to linearly reconstruct a query image. Unfortunately, such assumption is easily violated in the more challenging and realistic face verification scenario. A verification algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person, while explicitly taking into account the possibility of impostor attacks. In this paper, we first discuss why most of the SR literature is not applicable to verification problems. Motivated by the success of bag-of-words methods in the field of object recognition, which describe an image as a set of local patches or interest points, we then propose to tackle the verification problem by encoding each local face patch through SR. The locally encoded sparse vectors are pooled to form regional descriptors, where each descriptor covers a relatively large portion of the face. Experiments in various challenging conditions show that the proposed method achieves high and robust verification performance.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781467314886</identifier><identifier>ISBN: 1467314889</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781467314893</identifier><identifier>EISBN: 9781467314909</identifier><identifier>EISBN: 1467314897</identifier><identifier>EISBN: 1467314900</identifier><identifier>DOI: 10.1109/IJCNN.2012.6252611</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Encoding ; Probes ; Robustness ; Strontium ; Training ; Vectors</subject><ispartof>The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6252611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6252611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongkang Wong</creatorcontrib><creatorcontrib>Harandi, M. T.</creatorcontrib><creatorcontrib>Sanderson, C.</creatorcontrib><creatorcontrib>Lovell, B. C.</creatorcontrib><title>On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches</title><title>The 2012 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the related literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in identification is that the gallery always has sufficient samples per subject to linearly reconstruct a query image. Unfortunately, such assumption is easily violated in the more challenging and realistic face verification scenario. A verification algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person, while explicitly taking into account the possibility of impostor attacks. In this paper, we first discuss why most of the SR literature is not applicable to verification problems. Motivated by the success of bag-of-words methods in the field of object recognition, which describe an image as a set of local patches or interest points, we then propose to tackle the verification problem by encoding each local face patch through SR. The locally encoded sparse vectors are pooled to form regional descriptors, where each descriptor covers a relatively large portion of the face. Experiments in various challenging conditions show that the proposed method achieves high and robust verification performance.</description><subject>Dictionaries</subject><subject>Encoding</subject><subject>Probes</subject><subject>Robustness</subject><subject>Strontium</subject><subject>Training</subject><subject>Vectors</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781467314886</isbn><isbn>1467314889</isbn><isbn>9781467314893</isbn><isbn>9781467314909</isbn><isbn>1467314897</isbn><isbn>1467314900</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1OAyEYxL_EpvYF9MILbOUDFlhvplFb07QXPTfAgmK2ywawSd_eTawH5zKH-clkELoFMgcgzf3qdbHZzCkBOhe0pgLgDM0aqYALyYCrhp2jCQUBFedEXvzTlLj801jDrtEs5y8yYnRQ4BPUbnucovnOBZsQ966kYHFoXV9COeKDS8EHq0uIPT4EjfOgU3bY9Ta2of_A0WOvrcsPeBm7kMsYPmTcRas7rIchRW0_Xb5BV1532c1OPEXvz09vi2W13r6sFo_rKlBoSgUgWmrsONr72nLrpBGSUEmM1bRmoGxNlGROajMyl05xVbOac2g1tMazKbr77Q3Oud2Qwl6n4-70GfsBNx9cRg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yongkang Wong</creator><creator>Harandi, M. T.</creator><creator>Sanderson, C.</creator><creator>Lovell, B. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches</title><author>Yongkang Wong ; Harandi, M. T. ; Sanderson, C. ; Lovell, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-116d2bc488ff5c4ce7b670270bca25318c50873e7ab08747e848535441da1dbf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dictionaries</topic><topic>Encoding</topic><topic>Probes</topic><topic>Robustness</topic><topic>Strontium</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yongkang Wong</creatorcontrib><creatorcontrib>Harandi, M. T.</creatorcontrib><creatorcontrib>Sanderson, C.</creatorcontrib><creatorcontrib>Lovell, B. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongkang Wong</au><au>Harandi, M. T.</au><au>Sanderson, C.</au><au>Lovell, B. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches</atitle><btitle>The 2012 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781467314886</isbn><isbn>1467314889</isbn><eisbn>9781467314893</eisbn><eisbn>9781467314909</eisbn><eisbn>1467314897</eisbn><eisbn>1467314900</eisbn><abstract>In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the related literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in identification is that the gallery always has sufficient samples per subject to linearly reconstruct a query image. Unfortunately, such assumption is easily violated in the more challenging and realistic face verification scenario. A verification algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person, while explicitly taking into account the possibility of impostor attacks. In this paper, we first discuss why most of the SR literature is not applicable to verification problems. Motivated by the success of bag-of-words methods in the field of object recognition, which describe an image as a set of local patches or interest points, we then propose to tackle the verification problem by encoding each local face patch through SR. The locally encoded sparse vectors are pooled to form regional descriptors, where each descriptor covers a relatively large portion of the face. Experiments in various challenging conditions show that the proposed method achieves high and robust verification performance.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2012.6252611</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-8
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6252611
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dictionaries
Encoding
Probes
Robustness
Strontium
Training
Vectors
title On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20robust%20biometric%20identity%20verification%20via%20sparse%20encoding%20of%20faces:%20Holistic%20vs%20local%20approaches&rft.btitle=The%202012%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Yongkang%20Wong&rft.date=2012-01-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781467314886&rft.isbn_list=1467314889&rft_id=info:doi/10.1109/IJCNN.2012.6252611&rft_dat=%3Cieee_6IE%3E6252611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314893&rft.eisbn_list=9781467314909&rft.eisbn_list=1467314897&rft.eisbn_list=1467314900&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6252611&rfr_iscdi=true