A fingerprint spoof detection based on MLP and SVM

We introduce a fingerprint spoof detection technique based on MLP and SVM that combines several features. The proposed technique is evaluated on two scenarios: (i) when an impostor can perform consecutive attempts to be considered authentic; and, (ii) when the system deals with fingerprints from eld...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pereira, L. F. A., Pinheiro, H. N. B., Silva, J. I. S., Silva, A. G., Pina, T. M. L., Cavalcanti, G. D. C., Tsang Ing Ren, de Oliveira, J. P. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Pereira, L. F. A.
Pinheiro, H. N. B.
Silva, J. I. S.
Silva, A. G.
Pina, T. M. L.
Cavalcanti, G. D. C.
Tsang Ing Ren
de Oliveira, J. P. N.
description We introduce a fingerprint spoof detection technique based on MLP and SVM that combines several features. The proposed technique is evaluated on two scenarios: (i) when an impostor can perform consecutive attempts to be considered authentic; and, (ii) when the system deals with fingerprints from elderly people. In order to analyze these scenarios, a database was developed. The results show that the proposed combination of features increases the system performance in at least 33.56% and that the average error increases as more attempts for acceptance are allowed. The SVM classifier presents better performance in almost all the tested configurations. However, MLP is more accurate with biometrics from elderly people.
doi_str_mv 10.1109/IJCNN.2012.6252582
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6252582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6252582</ieee_id><sourcerecordid>6252582</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-5a38ed666fdd2cb8380c9cfd7e82715023c547b03956d7672a3c37ecae8bfc5a3</originalsourceid><addsrcrecordid>eNpVUMlOwzAUNJtEVfIDcPEPJNjP-7GKWIrSgsRyrRz7GQVBUsW58PdEohyYy4w0M09PQ8glZxXnzF2vH-rttgLGodKgQFk4IoUzlkttBJfWiWOyAK55KSUzJ_88q0__POHEOSly_mAz5gRwuSCwoqnr33Hcj10_0bwfhkQjThimbuhp6zNGOotN80R9H-nz2-aCnCX_mbE48JK83t681Pdl83i3rldN2QF3U6m8sBi11ilGCK0VlgUXUjRowXDFQAQlTcuEUzoabcCLIAwGj7ZNYW4vydXv3Q4Rd_N_X3783h0WED-V2kkJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fingerprint spoof detection based on MLP and SVM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pereira, L. F. A. ; Pinheiro, H. N. B. ; Silva, J. I. S. ; Silva, A. G. ; Pina, T. M. L. ; Cavalcanti, G. D. C. ; Tsang Ing Ren ; de Oliveira, J. P. N.</creator><creatorcontrib>Pereira, L. F. A. ; Pinheiro, H. N. B. ; Silva, J. I. S. ; Silva, A. G. ; Pina, T. M. L. ; Cavalcanti, G. D. C. ; Tsang Ing Ren ; de Oliveira, J. P. N.</creatorcontrib><description>We introduce a fingerprint spoof detection technique based on MLP and SVM that combines several features. The proposed technique is evaluated on two scenarios: (i) when an impostor can perform consecutive attempts to be considered authentic; and, (ii) when the system deals with fingerprints from elderly people. In order to analyze these scenarios, a database was developed. The results show that the proposed combination of features increases the system performance in at least 33.56% and that the average error increases as more attempts for acceptance are allowed. The SVM classifier presents better performance in almost all the tested configurations. However, MLP is more accurate with biometrics from elderly people.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781467314886</identifier><identifier>ISBN: 1467314889</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781467314893</identifier><identifier>EISBN: 9781467314909</identifier><identifier>EISBN: 1467314897</identifier><identifier>EISBN: 1467314900</identifier><identifier>DOI: 10.1109/IJCNN.2012.6252582</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Feature extraction ; Senior citizens ; Support vector machines ; Training ; Vectors</subject><ispartof>The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-7</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6252582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6252582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pereira, L. F. A.</creatorcontrib><creatorcontrib>Pinheiro, H. N. B.</creatorcontrib><creatorcontrib>Silva, J. I. S.</creatorcontrib><creatorcontrib>Silva, A. G.</creatorcontrib><creatorcontrib>Pina, T. M. L.</creatorcontrib><creatorcontrib>Cavalcanti, G. D. C.</creatorcontrib><creatorcontrib>Tsang Ing Ren</creatorcontrib><creatorcontrib>de Oliveira, J. P. N.</creatorcontrib><title>A fingerprint spoof detection based on MLP and SVM</title><title>The 2012 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>We introduce a fingerprint spoof detection technique based on MLP and SVM that combines several features. The proposed technique is evaluated on two scenarios: (i) when an impostor can perform consecutive attempts to be considered authentic; and, (ii) when the system deals with fingerprints from elderly people. In order to analyze these scenarios, a database was developed. The results show that the proposed combination of features increases the system performance in at least 33.56% and that the average error increases as more attempts for acceptance are allowed. The SVM classifier presents better performance in almost all the tested configurations. However, MLP is more accurate with biometrics from elderly people.</description><subject>Biometrics</subject><subject>Feature extraction</subject><subject>Senior citizens</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Vectors</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781467314886</isbn><isbn>1467314889</isbn><isbn>9781467314893</isbn><isbn>9781467314909</isbn><isbn>1467314897</isbn><isbn>1467314900</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlOwzAUNJtEVfIDcPEPJNjP-7GKWIrSgsRyrRz7GQVBUsW58PdEohyYy4w0M09PQ8glZxXnzF2vH-rttgLGodKgQFk4IoUzlkttBJfWiWOyAK55KSUzJ_88q0__POHEOSly_mAz5gRwuSCwoqnr33Hcj10_0bwfhkQjThimbuhp6zNGOotN80R9H-nz2-aCnCX_mbE48JK83t681Pdl83i3rldN2QF3U6m8sBi11ilGCK0VlgUXUjRowXDFQAQlTcuEUzoabcCLIAwGj7ZNYW4vydXv3Q4Rd_N_X3783h0WED-V2kkJ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Pereira, L. F. A.</creator><creator>Pinheiro, H. N. B.</creator><creator>Silva, J. I. S.</creator><creator>Silva, A. G.</creator><creator>Pina, T. M. L.</creator><creator>Cavalcanti, G. D. C.</creator><creator>Tsang Ing Ren</creator><creator>de Oliveira, J. P. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>A fingerprint spoof detection based on MLP and SVM</title><author>Pereira, L. F. A. ; Pinheiro, H. N. B. ; Silva, J. I. S. ; Silva, A. G. ; Pina, T. M. L. ; Cavalcanti, G. D. C. ; Tsang Ing Ren ; de Oliveira, J. P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-5a38ed666fdd2cb8380c9cfd7e82715023c547b03956d7672a3c37ecae8bfc5a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biometrics</topic><topic>Feature extraction</topic><topic>Senior citizens</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Pereira, L. F. A.</creatorcontrib><creatorcontrib>Pinheiro, H. N. B.</creatorcontrib><creatorcontrib>Silva, J. I. S.</creatorcontrib><creatorcontrib>Silva, A. G.</creatorcontrib><creatorcontrib>Pina, T. M. L.</creatorcontrib><creatorcontrib>Cavalcanti, G. D. C.</creatorcontrib><creatorcontrib>Tsang Ing Ren</creatorcontrib><creatorcontrib>de Oliveira, J. P. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pereira, L. F. A.</au><au>Pinheiro, H. N. B.</au><au>Silva, J. I. S.</au><au>Silva, A. G.</au><au>Pina, T. M. L.</au><au>Cavalcanti, G. D. C.</au><au>Tsang Ing Ren</au><au>de Oliveira, J. P. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fingerprint spoof detection based on MLP and SVM</atitle><btitle>The 2012 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781467314886</isbn><isbn>1467314889</isbn><eisbn>9781467314893</eisbn><eisbn>9781467314909</eisbn><eisbn>1467314897</eisbn><eisbn>1467314900</eisbn><abstract>We introduce a fingerprint spoof detection technique based on MLP and SVM that combines several features. The proposed technique is evaluated on two scenarios: (i) when an impostor can perform consecutive attempts to be considered authentic; and, (ii) when the system deals with fingerprints from elderly people. In order to analyze these scenarios, a database was developed. The results show that the proposed combination of features increases the system performance in at least 33.56% and that the average error increases as more attempts for acceptance are allowed. The SVM classifier presents better performance in almost all the tested configurations. However, MLP is more accurate with biometrics from elderly people.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2012.6252582</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-7
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6252582
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
Feature extraction
Senior citizens
Support vector machines
Training
Vectors
title A fingerprint spoof detection based on MLP and SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fingerprint%20spoof%20detection%20based%20on%20MLP%20and%20SVM&rft.btitle=The%202012%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Pereira,%20L.%20F.%20A.&rft.date=2012-01-01&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781467314886&rft.isbn_list=1467314889&rft_id=info:doi/10.1109/IJCNN.2012.6252582&rft_dat=%3Cieee_6IE%3E6252582%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314893&rft.eisbn_list=9781467314909&rft.eisbn_list=1467314897&rft.eisbn_list=1467314900&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6252582&rfr_iscdi=true