Discriminating classes collapsing for Globality and Locality Preserving Projections

In this paper, a novel approach, namely Globality and Locality Preserving Projections (GLPP), is proposed in the study of dimensionality reduction. The method is designed to combine the ideas behind Locality Preserving (LP), Discriminating Power (DP) and Maximally Collapsing Metric Learning (MCML),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wei Wang, Baogang Hu, Zengfu Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Wei Wang
Baogang Hu
Zengfu Wang
description In this paper, a novel approach, namely Globality and Locality Preserving Projections (GLPP), is proposed in the study of dimensionality reduction. The method is designed to combine the ideas behind Locality Preserving (LP), Discriminating Power (DP) and Maximally Collapsing Metric Learning (MCML), resulting in a unified model. Several distinguished features are obtained from the integration design. First, the method is able to take into account both global and local information of the data set. We introduce a new formula for calculating the conditional probabilities, which can remove the locality distortions from MCML. Second, discrimination information is applied so that a projection matrix is formed which can collapse all data points of the same class closer together, while pushing points of different classes further away. Third, the proposed method guarantees a supervised convex algorithm, which is a critical feature in data processing. Furthermore on this concern, GLPP is mapped to a Graphics Processor Unit (GPU) architecture in the implementation to be appropriate for large scale data sets. Several numerical studies are conducted on a variety of data sets. The numerical results confirm that GLPP consistently outperforms most up-to-date methods, allowing high classification accuracy, good visualization and sharply decreased consuming time.
doi_str_mv 10.1109/IJCNN.2012.6252372
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6252372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6252372</ieee_id><sourcerecordid>6252372</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2abfa949bbe62588f4b5afc00bd2f81ed61cc3d43878a378dc4e319d63ec44ba3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2fRFXyAnDJCyR4bSe2jyhAKYpKJeBc-S_IlUkqO0Lq25Oq5cBeRjvfaKVZhG4BlwBY3i9fm9WqJBhIWZOKUE7OUCa5AFZzCkxIeo5mBGooGMP84h8T9eUfo5JeoyylLZ5mShBgM_T-6JOJ_tv3avT9V26CSsml3AwhqF06WN0Q80UYtAp-3Oeqt3k7mOOyji65-HNIreOwdWb0Q59u0FWnQnLZSefo8_npo3kp2rfFsnloCw-8GguidKckk1q7qZYQHdOV6gzG2pJOgLM1GEMto4ILRbmwhjkK0tbUGca0onN0d7zrnXOb3dRCxf3m9CL6CwmUV9A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discriminating classes collapsing for Globality and Locality Preserving Projections</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wei Wang ; Baogang Hu ; Zengfu Wang</creator><creatorcontrib>Wei Wang ; Baogang Hu ; Zengfu Wang</creatorcontrib><description>In this paper, a novel approach, namely Globality and Locality Preserving Projections (GLPP), is proposed in the study of dimensionality reduction. The method is designed to combine the ideas behind Locality Preserving (LP), Discriminating Power (DP) and Maximally Collapsing Metric Learning (MCML), resulting in a unified model. Several distinguished features are obtained from the integration design. First, the method is able to take into account both global and local information of the data set. We introduce a new formula for calculating the conditional probabilities, which can remove the locality distortions from MCML. Second, discrimination information is applied so that a projection matrix is formed which can collapse all data points of the same class closer together, while pushing points of different classes further away. Third, the proposed method guarantees a supervised convex algorithm, which is a critical feature in data processing. Furthermore on this concern, GLPP is mapped to a Graphics Processor Unit (GPU) architecture in the implementation to be appropriate for large scale data sets. Several numerical studies are conducted on a variety of data sets. The numerical results confirm that GLPP consistently outperforms most up-to-date methods, allowing high classification accuracy, good visualization and sharply decreased consuming time.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9781467314886</identifier><identifier>ISBN: 1467314889</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781467314893</identifier><identifier>EISBN: 9781467314909</identifier><identifier>EISBN: 1467314897</identifier><identifier>EISBN: 1467314900</identifier><identifier>DOI: 10.1109/IJCNN.2012.6252372</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Dimensionality reduction ; Eigenvalues and eigenfunctions ; Geometry ; GPU ; Graphics processing unit ; manifold learning ; Maximally Collapsing Metric Learning (MCML) ; Measurement ; Probability ; Training ; Visualization</subject><ispartof>The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6252372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6252372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei Wang</creatorcontrib><creatorcontrib>Baogang Hu</creatorcontrib><creatorcontrib>Zengfu Wang</creatorcontrib><title>Discriminating classes collapsing for Globality and Locality Preserving Projections</title><title>The 2012 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>In this paper, a novel approach, namely Globality and Locality Preserving Projections (GLPP), is proposed in the study of dimensionality reduction. The method is designed to combine the ideas behind Locality Preserving (LP), Discriminating Power (DP) and Maximally Collapsing Metric Learning (MCML), resulting in a unified model. Several distinguished features are obtained from the integration design. First, the method is able to take into account both global and local information of the data set. We introduce a new formula for calculating the conditional probabilities, which can remove the locality distortions from MCML. Second, discrimination information is applied so that a projection matrix is formed which can collapse all data points of the same class closer together, while pushing points of different classes further away. Third, the proposed method guarantees a supervised convex algorithm, which is a critical feature in data processing. Furthermore on this concern, GLPP is mapped to a Graphics Processor Unit (GPU) architecture in the implementation to be appropriate for large scale data sets. Several numerical studies are conducted on a variety of data sets. The numerical results confirm that GLPP consistently outperforms most up-to-date methods, allowing high classification accuracy, good visualization and sharply decreased consuming time.</description><subject>Computer architecture</subject><subject>Dimensionality reduction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Geometry</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>manifold learning</subject><subject>Maximally Collapsing Metric Learning (MCML)</subject><subject>Measurement</subject><subject>Probability</subject><subject>Training</subject><subject>Visualization</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9781467314886</isbn><isbn>1467314889</isbn><isbn>9781467314893</isbn><isbn>9781467314909</isbn><isbn>1467314897</isbn><isbn>1467314900</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhM2fRFXyAnDJCyR4bSe2jyhAKYpKJeBc-S_IlUkqO0Lq25Oq5cBeRjvfaKVZhG4BlwBY3i9fm9WqJBhIWZOKUE7OUCa5AFZzCkxIeo5mBGooGMP84h8T9eUfo5JeoyylLZ5mShBgM_T-6JOJ_tv3avT9V26CSsml3AwhqF06WN0Q80UYtAp-3Oeqt3k7mOOyji65-HNIreOwdWb0Q59u0FWnQnLZSefo8_npo3kp2rfFsnloCw-8GguidKckk1q7qZYQHdOV6gzG2pJOgLM1GEMto4ILRbmwhjkK0tbUGca0onN0d7zrnXOb3dRCxf3m9CL6CwmUV9A</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Wei Wang</creator><creator>Baogang Hu</creator><creator>Zengfu Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Discriminating classes collapsing for Globality and Locality Preserving Projections</title><author>Wei Wang ; Baogang Hu ; Zengfu Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2abfa949bbe62588f4b5afc00bd2f81ed61cc3d43878a378dc4e319d63ec44ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer architecture</topic><topic>Dimensionality reduction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Geometry</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>manifold learning</topic><topic>Maximally Collapsing Metric Learning (MCML)</topic><topic>Measurement</topic><topic>Probability</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Wang</creatorcontrib><creatorcontrib>Baogang Hu</creatorcontrib><creatorcontrib>Zengfu Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Wang</au><au>Baogang Hu</au><au>Zengfu Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discriminating classes collapsing for Globality and Locality Preserving Projections</atitle><btitle>The 2012 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9781467314886</isbn><isbn>1467314889</isbn><eisbn>9781467314893</eisbn><eisbn>9781467314909</eisbn><eisbn>1467314897</eisbn><eisbn>1467314900</eisbn><abstract>In this paper, a novel approach, namely Globality and Locality Preserving Projections (GLPP), is proposed in the study of dimensionality reduction. The method is designed to combine the ideas behind Locality Preserving (LP), Discriminating Power (DP) and Maximally Collapsing Metric Learning (MCML), resulting in a unified model. Several distinguished features are obtained from the integration design. First, the method is able to take into account both global and local information of the data set. We introduce a new formula for calculating the conditional probabilities, which can remove the locality distortions from MCML. Second, discrimination information is applied so that a projection matrix is formed which can collapse all data points of the same class closer together, while pushing points of different classes further away. Third, the proposed method guarantees a supervised convex algorithm, which is a critical feature in data processing. Furthermore on this concern, GLPP is mapped to a Graphics Processor Unit (GPU) architecture in the implementation to be appropriate for large scale data sets. Several numerical studies are conducted on a variety of data sets. The numerical results confirm that GLPP consistently outperforms most up-to-date methods, allowing high classification accuracy, good visualization and sharply decreased consuming time.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2012.6252372</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, p.1-8
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6252372
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer architecture
Dimensionality reduction
Eigenvalues and eigenfunctions
Geometry
GPU
Graphics processing unit
manifold learning
Maximally Collapsing Metric Learning (MCML)
Measurement
Probability
Training
Visualization
title Discriminating classes collapsing for Globality and Locality Preserving Projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discriminating%20classes%20collapsing%20for%20Globality%20and%20Locality%20Preserving%20Projections&rft.btitle=The%202012%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Wei%20Wang&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9781467314886&rft.isbn_list=1467314889&rft_id=info:doi/10.1109/IJCNN.2012.6252372&rft_dat=%3Cieee_6IE%3E6252372%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314893&rft.eisbn_list=9781467314909&rft.eisbn_list=1467314897&rft.eisbn_list=1467314900&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6252372&rfr_iscdi=true