Reference modification control DC-DC converter with neural network predictor

The purpose of this paper is to present a new digital control method for dc-dc converters by reference modification with the neural network predictor. In the proposed method, the reference in the proportional control term of the conventional PID control is modified using the neural network predictor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maruta, H., Motomura, M., Ueno, K., Kurokawa, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Maruta, H.
Motomura, M.
Ueno, K.
Kurokawa, F.
description The purpose of this paper is to present a new digital control method for dc-dc converters by reference modification with the neural network predictor. In the proposed method, the reference in the proportional control term of the conventional PID control is modified using the neural network predictor during the transient interval. The neural network is repeatedly trained to predict the output voltage using former predicted data for the modification of the reference. After the training, the reference in the P control is modified by the predictor to improve the transient response. By using the proposed method, the undershoot of output voltage is suppressed to 41% compared with the conventional method's one. The convergence time is also improved to 48% compared with the conventional method's one. Therefore, it is confirmed that the proposed method has the superior performance to control dc-dc converters.
doi_str_mv 10.1109/COMPEL.2012.6251806
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6251806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6251806</ieee_id><sourcerecordid>6251806</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d75f330f77d049b256dc2574d413cd9f18e107d112b1595f33f8c7683dfe424c3</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjKhgrfsFfckP7JrrZvMo21qFlYr0vWyTE4xuNyWNFv_eFOu8DHOYGZiD0IySilKi79vVy-uiqxihrKqZpA2pL9AtFUwIzRUnl6jQqvnXjF2hSY7xUubTDSoOhw-SkR0ZE9S9gYMIowG8C9Y7b_rkw4hNGFMMA5635bw9qW-ICSI--vSOR_iK_ZApHUP8xPsI1psU4h26dv1wgOLMU7R-XKzbp7JbLZ_bh670mqTSKuk4J04pS4TeMllbw6QSVlBurHa0AUqUpZRtqdQnr2uMqhtuHeRVhk_R7K_WA8BmH_2ujz-b8y_4L2qYUKU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reference modification control DC-DC converter with neural network predictor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maruta, H. ; Motomura, M. ; Ueno, K. ; Kurokawa, F.</creator><creatorcontrib>Maruta, H. ; Motomura, M. ; Ueno, K. ; Kurokawa, F.</creatorcontrib><description>The purpose of this paper is to present a new digital control method for dc-dc converters by reference modification with the neural network predictor. In the proposed method, the reference in the proportional control term of the conventional PID control is modified using the neural network predictor during the transient interval. The neural network is repeatedly trained to predict the output voltage using former predicted data for the modification of the reference. After the training, the reference in the P control is modified by the predictor to improve the transient response. By using the proposed method, the undershoot of output voltage is suppressed to 41% compared with the conventional method's one. The convergence time is also improved to 48% compared with the conventional method's one. Therefore, it is confirmed that the proposed method has the superior performance to control dc-dc converters.</description><identifier>ISSN: 1093-5142</identifier><identifier>ISBN: 9781424493722</identifier><identifier>ISBN: 1424493722</identifier><identifier>EISBN: 1424493730</identifier><identifier>EISBN: 1424493714</identifier><identifier>EISBN: 9781424493715</identifier><identifier>EISBN: 9781424493739</identifier><identifier>DOI: 10.1109/COMPEL.2012.6251806</identifier><language>eng</language><publisher>IEEE</publisher><subject>Digital control ; neural network ; Neural networks ; P control ; PD control ; Table lookup ; Training ; Transient analysis ; Transient response</subject><ispartof>2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6251806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6251806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maruta, H.</creatorcontrib><creatorcontrib>Motomura, M.</creatorcontrib><creatorcontrib>Ueno, K.</creatorcontrib><creatorcontrib>Kurokawa, F.</creatorcontrib><title>Reference modification control DC-DC converter with neural network predictor</title><title>2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL)</title><addtitle>COMPEL</addtitle><description>The purpose of this paper is to present a new digital control method for dc-dc converters by reference modification with the neural network predictor. In the proposed method, the reference in the proportional control term of the conventional PID control is modified using the neural network predictor during the transient interval. The neural network is repeatedly trained to predict the output voltage using former predicted data for the modification of the reference. After the training, the reference in the P control is modified by the predictor to improve the transient response. By using the proposed method, the undershoot of output voltage is suppressed to 41% compared with the conventional method's one. The convergence time is also improved to 48% compared with the conventional method's one. Therefore, it is confirmed that the proposed method has the superior performance to control dc-dc converters.</description><subject>Digital control</subject><subject>neural network</subject><subject>Neural networks</subject><subject>P control</subject><subject>PD control</subject><subject>Table lookup</subject><subject>Training</subject><subject>Transient analysis</subject><subject>Transient response</subject><issn>1093-5142</issn><isbn>9781424493722</isbn><isbn>1424493722</isbn><isbn>1424493730</isbn><isbn>1424493714</isbn><isbn>9781424493715</isbn><isbn>9781424493739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjKhgrfsFfckP7JrrZvMo21qFlYr0vWyTE4xuNyWNFv_eFOu8DHOYGZiD0IySilKi79vVy-uiqxihrKqZpA2pL9AtFUwIzRUnl6jQqvnXjF2hSY7xUubTDSoOhw-SkR0ZE9S9gYMIowG8C9Y7b_rkw4hNGFMMA5635bw9qW-ICSI--vSOR_iK_ZApHUP8xPsI1psU4h26dv1wgOLMU7R-XKzbp7JbLZ_bh670mqTSKuk4J04pS4TeMllbw6QSVlBurHa0AUqUpZRtqdQnr2uMqhtuHeRVhk_R7K_WA8BmH_2ujz-b8y_4L2qYUKU</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Maruta, H.</creator><creator>Motomura, M.</creator><creator>Ueno, K.</creator><creator>Kurokawa, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Reference modification control DC-DC converter with neural network predictor</title><author>Maruta, H. ; Motomura, M. ; Ueno, K. ; Kurokawa, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d75f330f77d049b256dc2574d413cd9f18e107d112b1595f33f8c7683dfe424c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Digital control</topic><topic>neural network</topic><topic>Neural networks</topic><topic>P control</topic><topic>PD control</topic><topic>Table lookup</topic><topic>Training</topic><topic>Transient analysis</topic><topic>Transient response</topic><toplevel>online_resources</toplevel><creatorcontrib>Maruta, H.</creatorcontrib><creatorcontrib>Motomura, M.</creatorcontrib><creatorcontrib>Ueno, K.</creatorcontrib><creatorcontrib>Kurokawa, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maruta, H.</au><au>Motomura, M.</au><au>Ueno, K.</au><au>Kurokawa, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reference modification control DC-DC converter with neural network predictor</atitle><btitle>2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL)</btitle><stitle>COMPEL</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1093-5142</issn><isbn>9781424493722</isbn><isbn>1424493722</isbn><eisbn>1424493730</eisbn><eisbn>1424493714</eisbn><eisbn>9781424493715</eisbn><eisbn>9781424493739</eisbn><abstract>The purpose of this paper is to present a new digital control method for dc-dc converters by reference modification with the neural network predictor. In the proposed method, the reference in the proportional control term of the conventional PID control is modified using the neural network predictor during the transient interval. The neural network is repeatedly trained to predict the output voltage using former predicted data for the modification of the reference. After the training, the reference in the P control is modified by the predictor to improve the transient response. By using the proposed method, the undershoot of output voltage is suppressed to 41% compared with the conventional method's one. The convergence time is also improved to 48% compared with the conventional method's one. Therefore, it is confirmed that the proposed method has the superior performance to control dc-dc converters.</abstract><pub>IEEE</pub><doi>10.1109/COMPEL.2012.6251806</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1093-5142
ispartof 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), 2012, p.1-4
issn 1093-5142
language eng
recordid cdi_ieee_primary_6251806
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Digital control
neural network
Neural networks
P control
PD control
Table lookup
Training
Transient analysis
Transient response
title Reference modification control DC-DC converter with neural network predictor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reference%20modification%20control%20DC-DC%20converter%20with%20neural%20network%20predictor&rft.btitle=2012%20IEEE%2013th%20Workshop%20on%20Control%20and%20Modeling%20for%20Power%20Electronics%20(COMPEL)&rft.au=Maruta,%20H.&rft.date=2012-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1093-5142&rft.isbn=9781424493722&rft.isbn_list=1424493722&rft_id=info:doi/10.1109/COMPEL.2012.6251806&rft_dat=%3Cieee_6IE%3E6251806%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424493730&rft.eisbn_list=1424493714&rft.eisbn_list=9781424493715&rft.eisbn_list=9781424493739&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6251806&rfr_iscdi=true