An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling

Adaptive connectors as conjunction operators of the inference system is one of the methodologies to improve the accuracy of fuzzy rule based systems by means of local adaptation of the inference process to each rule of the rule base. They are usually implemented through the classic adaptive t-norms,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marquez, A. A., Marquez, F. A., Peregrin, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Marquez, A. A.
Marquez, F. A.
Peregrin, A.
description Adaptive connectors as conjunction operators of the inference system is one of the methodologies to improve the accuracy of fuzzy rule based systems by means of local adaptation of the inference process to each rule of the rule base. They are usually implemented through the classic adaptive t-norms, but when dealing with high-dimensional problems (several variables and/or instances) the adaptation of their parameters becomes problematic. In this paper, we propose a new adaptive conjunction connector and an associated multi-objective evolutionary learning algorithm which is more efficient and thus suitable for using adaptive connectors in high dimensional problems. The proposal is compared in an experimental study with the use of a well known efficient adaptive t-norm from the literature as conjunction operator. The results obtained on five regression problems confirm the effectiveness of the presented proposal in terms of efficiency, but also in terms of simplicity and compactness of the obtained models.
doi_str_mv 10.1109/FUZZ-IEEE.2012.6251181
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6251181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6251181</ieee_id><sourcerecordid>6251181</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a31bca606f4fbb580d87282a33a249890dd88e1194a8553edeb8ba2cac754023</originalsourceid><addsrcrecordid>eNo1kFtrAjEQhVPaQq31FxRK_sDaXDa72UeRtRWEvtgXXySXiUZ2E9mLoL--a2vPy3A-zgzMQeiNkimlpHhffG82ybIsyykjlE0zJiiV9A5NilzSNMs5FUSQe_T8b_LiAY2GTZnkQqZPaNK2BzJoiFPBR-gyCxic88ZD6HDdV51Poj6A6fwJMJxi1Xc-BtWcsbLq-EtNDIc-mCvHLjZ473d7bH0Nob1GK3xsoq6gbrEPuPJh1_u28wa7_nI54zpaqK70BT06VbUwuc0xWi_K9fwzWX19LOezVeJpLrpEcaqNykjmUqe1kMTKnEmmOFcsLWRBrJUSKC1SJYXgYEFLrZhRJhcpYXyMXv_OegDYHhtfD89sb83xH3HoZK0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marquez, A. A. ; Marquez, F. A. ; Peregrin, A.</creator><creatorcontrib>Marquez, A. A. ; Marquez, F. A. ; Peregrin, A.</creatorcontrib><description>Adaptive connectors as conjunction operators of the inference system is one of the methodologies to improve the accuracy of fuzzy rule based systems by means of local adaptation of the inference process to each rule of the rule base. They are usually implemented through the classic adaptive t-norms, but when dealing with high-dimensional problems (several variables and/or instances) the adaptation of their parameters becomes problematic. In this paper, we propose a new adaptive conjunction connector and an associated multi-objective evolutionary learning algorithm which is more efficient and thus suitable for using adaptive connectors in high dimensional problems. The proposal is compared in an experimental study with the use of a well known efficient adaptive t-norm from the literature as conjunction operator. The results obtained on five regression problems confirm the effectiveness of the presented proposal in terms of efficiency, but also in terms of simplicity and compactness of the obtained models.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1467315079</identifier><identifier>ISBN: 9781467315074</identifier><identifier>EISBN: 9781467315050</identifier><identifier>EISBN: 1467315060</identifier><identifier>EISBN: 9781467315067</identifier><identifier>EISBN: 1467315052</identifier><identifier>DOI: 10.1109/FUZZ-IEEE.2012.6251181</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; Adaptive Inference Systems ; Adaptive systems ; Complexity theory ; Computational modeling ; Connectors ; High-dimensional regression problems ; Linguistic fuzzy modelling ; Multi-objective genetic fuzzy systems ; Pragmatics</subject><ispartof>2012 IEEE International Conference on Fuzzy Systems, 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6251181$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6251181$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marquez, A. A.</creatorcontrib><creatorcontrib>Marquez, F. A.</creatorcontrib><creatorcontrib>Peregrin, A.</creatorcontrib><title>An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling</title><title>2012 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZ-IEEE</addtitle><description>Adaptive connectors as conjunction operators of the inference system is one of the methodologies to improve the accuracy of fuzzy rule based systems by means of local adaptation of the inference process to each rule of the rule base. They are usually implemented through the classic adaptive t-norms, but when dealing with high-dimensional problems (several variables and/or instances) the adaptation of their parameters becomes problematic. In this paper, we propose a new adaptive conjunction connector and an associated multi-objective evolutionary learning algorithm which is more efficient and thus suitable for using adaptive connectors in high dimensional problems. The proposal is compared in an experimental study with the use of a well known efficient adaptive t-norm from the literature as conjunction operator. The results obtained on five regression problems confirm the effectiveness of the presented proposal in terms of efficiency, but also in terms of simplicity and compactness of the obtained models.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Adaptive Inference Systems</subject><subject>Adaptive systems</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Connectors</subject><subject>High-dimensional regression problems</subject><subject>Linguistic fuzzy modelling</subject><subject>Multi-objective genetic fuzzy systems</subject><subject>Pragmatics</subject><issn>1098-7584</issn><isbn>1467315079</isbn><isbn>9781467315074</isbn><isbn>9781467315050</isbn><isbn>1467315060</isbn><isbn>9781467315067</isbn><isbn>1467315052</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kFtrAjEQhVPaQq31FxRK_sDaXDa72UeRtRWEvtgXXySXiUZ2E9mLoL--a2vPy3A-zgzMQeiNkimlpHhffG82ybIsyykjlE0zJiiV9A5NilzSNMs5FUSQe_T8b_LiAY2GTZnkQqZPaNK2BzJoiFPBR-gyCxic88ZD6HDdV51Poj6A6fwJMJxi1Xc-BtWcsbLq-EtNDIc-mCvHLjZ473d7bH0Nob1GK3xsoq6gbrEPuPJh1_u28wa7_nI54zpaqK70BT06VbUwuc0xWi_K9fwzWX19LOezVeJpLrpEcaqNykjmUqe1kMTKnEmmOFcsLWRBrJUSKC1SJYXgYEFLrZhRJhcpYXyMXv_OegDYHhtfD89sb83xH3HoZK0</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Marquez, A. A.</creator><creator>Marquez, F. A.</creator><creator>Peregrin, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling</title><author>Marquez, A. A. ; Marquez, F. A. ; Peregrin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a31bca606f4fbb580d87282a33a249890dd88e1194a8553edeb8ba2cac754023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Adaptive Inference Systems</topic><topic>Adaptive systems</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Connectors</topic><topic>High-dimensional regression problems</topic><topic>Linguistic fuzzy modelling</topic><topic>Multi-objective genetic fuzzy systems</topic><topic>Pragmatics</topic><toplevel>online_resources</toplevel><creatorcontrib>Marquez, A. A.</creatorcontrib><creatorcontrib>Marquez, F. A.</creatorcontrib><creatorcontrib>Peregrin, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marquez, A. A.</au><au>Marquez, F. A.</au><au>Peregrin, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling</atitle><btitle>2012 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZ-IEEE</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1098-7584</issn><isbn>1467315079</isbn><isbn>9781467315074</isbn><eisbn>9781467315050</eisbn><eisbn>1467315060</eisbn><eisbn>9781467315067</eisbn><eisbn>1467315052</eisbn><abstract>Adaptive connectors as conjunction operators of the inference system is one of the methodologies to improve the accuracy of fuzzy rule based systems by means of local adaptation of the inference process to each rule of the rule base. They are usually implemented through the classic adaptive t-norms, but when dealing with high-dimensional problems (several variables and/or instances) the adaptation of their parameters becomes problematic. In this paper, we propose a new adaptive conjunction connector and an associated multi-objective evolutionary learning algorithm which is more efficient and thus suitable for using adaptive connectors in high dimensional problems. The proposal is compared in an experimental study with the use of a well known efficient adaptive t-norm from the literature as conjunction operator. The results obtained on five regression problems confirm the effectiveness of the presented proposal in terms of efficiency, but also in terms of simplicity and compactness of the obtained models.</abstract><pub>IEEE</pub><doi>10.1109/FUZZ-IEEE.2012.6251181</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2012 IEEE International Conference on Fuzzy Systems, 2012, p.1-8
issn 1098-7584
language eng
recordid cdi_ieee_primary_6251181
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Adaptation models
Adaptive Inference Systems
Adaptive systems
Complexity theory
Computational modeling
Connectors
High-dimensional regression problems
Linguistic fuzzy modelling
Multi-objective genetic fuzzy systems
Pragmatics
title An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20multi-objective%20evolutionary%20adaptive%20conjunction%20for%20high%20dimensional%20problems%20in%20linguistic%20fuzzy%20modelling&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Marquez,%20A.%20A.&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1098-7584&rft.isbn=1467315079&rft.isbn_list=9781467315074&rft_id=info:doi/10.1109/FUZZ-IEEE.2012.6251181&rft_dat=%3Cieee_6IE%3E6251181%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467315050&rft.eisbn_list=1467315060&rft.eisbn_list=9781467315067&rft.eisbn_list=1467315052&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6251181&rfr_iscdi=true