Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features

We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Takahashi, K., Umano, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Takahashi, K.
Umano, M.
description We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.
doi_str_mv 10.1109/FUZZ-IEEE.2012.6251177
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6251177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6251177</ieee_id><sourcerecordid>6251177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-258aa5e3a2a28b82af5e433a8b925f7ee9e68e22f56e1a51659c11f012e65a023</originalsourceid><addsrcrecordid>eNo1kNFKAzEQRSMqWGu_QJD8wNZM0myyj1K2WigIYl_6UmbbSY1suyVJ1f69EduBYbjcM_fhMvYAYgggqsfJfLEopnVdD6UAOSylBjDmgg0qY2FUGgVaaHHJbs_CVFeslz9tYbQd3bBBjJ8iT8ZBqx47vFEKnr6w5Z3j0W99i4EnvyUeKRuRf_v0cTZ8OvI1bQLRH9363ebgY_IrTj_7QDH6bhe56wLftF2TI1Og3Zpj3rZbZe0I0yGDd-zaYRtpcLp9Np_U7-OXYvb6PB0_zQoPRqdCaouoSaFEaRsr0WkaKYW2qaR2hqii0pKUTpcEqKHU1QrA5Wao1Cik6rP7_1xPRMt98FsMx-WpNfULAbFh8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takahashi, K. ; Umano, M.</creator><creatorcontrib>Takahashi, K. ; Umano, M.</creatorcontrib><description>We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1467315079</identifier><identifier>ISBN: 9781467315074</identifier><identifier>EISBN: 9781467315050</identifier><identifier>EISBN: 1467315060</identifier><identifier>EISBN: 9781467315067</identifier><identifier>EISBN: 1467315052</identifier><identifier>DOI: 10.1109/FUZZ-IEEE.2012.6251177</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Feature extraction ; Fuzzy sets ; Natural languages ; Pragmatics ; Stochastic processes ; Time series analysis</subject><ispartof>2012 IEEE International Conference on Fuzzy Systems, 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6251177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6251177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><title>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</title><title>2012 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZ-IEEE</addtitle><description>We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.</description><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Fuzzy sets</subject><subject>Natural languages</subject><subject>Pragmatics</subject><subject>Stochastic processes</subject><subject>Time series analysis</subject><issn>1098-7584</issn><isbn>1467315079</isbn><isbn>9781467315074</isbn><isbn>9781467315050</isbn><isbn>1467315060</isbn><isbn>9781467315067</isbn><isbn>1467315052</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNFKAzEQRSMqWGu_QJD8wNZM0myyj1K2WigIYl_6UmbbSY1suyVJ1f69EduBYbjcM_fhMvYAYgggqsfJfLEopnVdD6UAOSylBjDmgg0qY2FUGgVaaHHJbs_CVFeslz9tYbQd3bBBjJ8iT8ZBqx47vFEKnr6w5Z3j0W99i4EnvyUeKRuRf_v0cTZ8OvI1bQLRH9363ebgY_IrTj_7QDH6bhe56wLftF2TI1Og3Zpj3rZbZe0I0yGDd-zaYRtpcLp9Np_U7-OXYvb6PB0_zQoPRqdCaouoSaFEaRsr0WkaKYW2qaR2hqii0pKUTpcEqKHU1QrA5Wao1Cik6rP7_1xPRMt98FsMx-WpNfULAbFh8A</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Takahashi, K.</creator><creator>Umano, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</title><author>Takahashi, K. ; Umano, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-258aa5e3a2a28b82af5e433a8b925f7ee9e68e22f56e1a51659c11f012e65a023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Fuzzy sets</topic><topic>Natural languages</topic><topic>Pragmatics</topic><topic>Stochastic processes</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, K.</au><au>Umano, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</atitle><btitle>2012 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZ-IEEE</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1098-7584</issn><isbn>1467315079</isbn><isbn>9781467315074</isbn><eisbn>9781467315050</eisbn><eisbn>1467315060</eisbn><eisbn>9781467315067</eisbn><eisbn>1467315052</eisbn><abstract>We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.</abstract><pub>IEEE</pub><doi>10.1109/FUZZ-IEEE.2012.6251177</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2012 IEEE International Conference on Fuzzy Systems, 2012, p.1-8
issn 1098-7584
language eng
recordid cdi_ieee_primary_6251177
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Feature extraction
Fuzzy sets
Natural languages
Pragmatics
Stochastic processes
Time series analysis
title Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Retrieval%20of%20similar%20time%20series%20with%20similarity%20degree%20of%20linguistic%20expressions%20for%20global%20trend%20and%20local%20features&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Takahashi,%20K.&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1098-7584&rft.isbn=1467315079&rft.isbn_list=9781467315074&rft_id=info:doi/10.1109/FUZZ-IEEE.2012.6251177&rft_dat=%3Cieee_6IE%3E6251177%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467315050&rft.eisbn_list=1467315060&rft.eisbn_list=9781467315067&rft.eisbn_list=1467315052&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6251177&rfr_iscdi=true