Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features
We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Takahashi, K. Umano, M. |
description | We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree. |
doi_str_mv | 10.1109/FUZZ-IEEE.2012.6251177 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6251177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6251177</ieee_id><sourcerecordid>6251177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-258aa5e3a2a28b82af5e433a8b925f7ee9e68e22f56e1a51659c11f012e65a023</originalsourceid><addsrcrecordid>eNo1kNFKAzEQRSMqWGu_QJD8wNZM0myyj1K2WigIYl_6UmbbSY1suyVJ1f69EduBYbjcM_fhMvYAYgggqsfJfLEopnVdD6UAOSylBjDmgg0qY2FUGgVaaHHJbs_CVFeslz9tYbQd3bBBjJ8iT8ZBqx47vFEKnr6w5Z3j0W99i4EnvyUeKRuRf_v0cTZ8OvI1bQLRH9363ebgY_IrTj_7QDH6bhe56wLftF2TI1Og3Zpj3rZbZe0I0yGDd-zaYRtpcLp9Np_U7-OXYvb6PB0_zQoPRqdCaouoSaFEaRsr0WkaKYW2qaR2hqii0pKUTpcEqKHU1QrA5Wao1Cik6rP7_1xPRMt98FsMx-WpNfULAbFh8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takahashi, K. ; Umano, M.</creator><creatorcontrib>Takahashi, K. ; Umano, M.</creatorcontrib><description>We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1467315079</identifier><identifier>ISBN: 9781467315074</identifier><identifier>EISBN: 9781467315050</identifier><identifier>EISBN: 1467315060</identifier><identifier>EISBN: 9781467315067</identifier><identifier>EISBN: 1467315052</identifier><identifier>DOI: 10.1109/FUZZ-IEEE.2012.6251177</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Feature extraction ; Fuzzy sets ; Natural languages ; Pragmatics ; Stochastic processes ; Time series analysis</subject><ispartof>2012 IEEE International Conference on Fuzzy Systems, 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6251177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6251177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><title>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</title><title>2012 IEEE International Conference on Fuzzy Systems</title><addtitle>FUZZ-IEEE</addtitle><description>We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.</description><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Fuzzy sets</subject><subject>Natural languages</subject><subject>Pragmatics</subject><subject>Stochastic processes</subject><subject>Time series analysis</subject><issn>1098-7584</issn><isbn>1467315079</isbn><isbn>9781467315074</isbn><isbn>9781467315050</isbn><isbn>1467315060</isbn><isbn>9781467315067</isbn><isbn>1467315052</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNFKAzEQRSMqWGu_QJD8wNZM0myyj1K2WigIYl_6UmbbSY1suyVJ1f69EduBYbjcM_fhMvYAYgggqsfJfLEopnVdD6UAOSylBjDmgg0qY2FUGgVaaHHJbs_CVFeslz9tYbQd3bBBjJ8iT8ZBqx47vFEKnr6w5Z3j0W99i4EnvyUeKRuRf_v0cTZ8OvI1bQLRH9363ebgY_IrTj_7QDH6bhe56wLftF2TI1Og3Zpj3rZbZe0I0yGDd-zaYRtpcLp9Np_U7-OXYvb6PB0_zQoPRqdCaouoSaFEaRsr0WkaKYW2qaR2hqii0pKUTpcEqKHU1QrA5Wao1Cik6rP7_1xPRMt98FsMx-WpNfULAbFh8A</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Takahashi, K.</creator><creator>Umano, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</title><author>Takahashi, K. ; Umano, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-258aa5e3a2a28b82af5e433a8b925f7ee9e68e22f56e1a51659c11f012e65a023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Fuzzy sets</topic><topic>Natural languages</topic><topic>Pragmatics</topic><topic>Stochastic processes</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, K.</creatorcontrib><creatorcontrib>Umano, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, K.</au><au>Umano, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features</atitle><btitle>2012 IEEE International Conference on Fuzzy Systems</btitle><stitle>FUZZ-IEEE</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1098-7584</issn><isbn>1467315079</isbn><isbn>9781467315074</isbn><eisbn>9781467315050</eisbn><eisbn>1467315060</eisbn><eisbn>9781467315067</eisbn><eisbn>1467315052</eisbn><abstract>We have various kinds of time series such as stock prices. We understand them via their linguistic expressions in a natural language rather than conventional stochastic models. We have proposed a method to extract their linguistic expressions for global trend and local features in a natural language. In this paper we propose a similarity degree of linguistic expressions for retrieving similar time series. And we tune the terms of the temporal axis to have better linguistic expressions. Then we illustrate retrieval of similar time series by our similarity degree.</abstract><pub>IEEE</pub><doi>10.1109/FUZZ-IEEE.2012.6251177</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | 2012 IEEE International Conference on Fuzzy Systems, 2012, p.1-8 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_6251177 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Educational institutions Feature extraction Fuzzy sets Natural languages Pragmatics Stochastic processes Time series analysis |
title | Retrieval of similar time series with similarity degree of linguistic expressions for global trend and local features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Retrieval%20of%20similar%20time%20series%20with%20similarity%20degree%20of%20linguistic%20expressions%20for%20global%20trend%20and%20local%20features&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems&rft.au=Takahashi,%20K.&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1098-7584&rft.isbn=1467315079&rft.isbn_list=9781467315074&rft_id=info:doi/10.1109/FUZZ-IEEE.2012.6251177&rft_dat=%3Cieee_6IE%3E6251177%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467315050&rft.eisbn_list=1467315060&rft.eisbn_list=9781467315067&rft.eisbn_list=1467315052&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6251177&rfr_iscdi=true |