Large-scale simulation studies in image pattern recognition

Many obstacles to progress in image pattern recognition result from the fact that per-class distributions are often too irregular to be well-approximated by simple analytical functions. Simulation studies offer one way to circumvent these obstacles. We present three closely related studies of machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1997-10, Vol.19 (10), p.1067-1079
Hauptverfasser: Tin Kam Ho, Baird, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1079
container_issue 10
container_start_page 1067
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 19
creator Tin Kam Ho
Baird, H.S.
description Many obstacles to progress in image pattern recognition result from the fact that per-class distributions are often too irregular to be well-approximated by simple analytical functions. Simulation studies offer one way to circumvent these obstacles. We present three closely related studies of machine-printed character recognition that rely on synthetic data generated pseudo-randomly in accordance with an explicit stochastic model of document image degradations. The unusually large scale of experiments - involving several million samples that makes this methodology possible have allowed us to compute sharp estimates of the intrinsic difficulty (Bayes risk) of concrete image recognition problems, as well as the asymptotic accuracy and domain of competency of classifiers.
doi_str_mv 10.1109/34.625107
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_625107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>625107</ieee_id><sourcerecordid>28330127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-7a7cb6d0e4f5c4bdfbb23b32e576eea811c6526ce64740b47aad5f9e0dec09433</originalsourceid><addsrcrecordid>eNo90DtLxEAUBeBBFIyrha1VKsEi6513gpUs6wMCNloPk8lNGMljnUkK_71Zslid4nxcLoeQWwpbSqF45GKrmKSgz0hCC15kXPLinCRAFcvynOWX5CrGbwAqJPCEPJU2tJhFZztMo-_nzk5-HNI4zbXHmPoh9b1tMT3YacIwpAHd2A7-iK7JRWO7iDen3JCvl_3n7i0rP17fd89l5pjWU6atdpWqAUUjnajqpqoYrzhDqRWizSl1SjLlUAktoBLa2lo2BUKNDgrB-Ybcr3cPYfyZMU6m99Fh19kBxzkalnMOlOkFPqzQhTHGgI05hOX78GsomOM8hguzzrPYu9V6RPx3p_IPhvdgNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28330127</pqid></control><display><type>article</type><title>Large-scale simulation studies in image pattern recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Tin Kam Ho ; Baird, H.S.</creator><creatorcontrib>Tin Kam Ho ; Baird, H.S.</creatorcontrib><description>Many obstacles to progress in image pattern recognition result from the fact that per-class distributions are often too irregular to be well-approximated by simple analytical functions. Simulation studies offer one way to circumvent these obstacles. We present three closely related studies of machine-printed character recognition that rely on synthetic data generated pseudo-randomly in accordance with an explicit stochastic model of document image degradations. The unusually large scale of experiments - involving several million samples that makes this methodology possible have allowed us to compute sharp estimates of the intrinsic difficulty (Bayes risk) of concrete image recognition problems, as well as the asymptotic accuracy and domain of competency of classifiers.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.625107</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character generation ; Character recognition ; Concrete ; Degradation ; Image analysis ; Image recognition ; Large-scale systems ; Pattern analysis ; Pattern recognition ; Stochastic processes</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1997-10, Vol.19 (10), p.1067-1079</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-7a7cb6d0e4f5c4bdfbb23b32e576eea811c6526ce64740b47aad5f9e0dec09433</citedby><cites>FETCH-LOGICAL-c277t-7a7cb6d0e4f5c4bdfbb23b32e576eea811c6526ce64740b47aad5f9e0dec09433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/625107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/625107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tin Kam Ho</creatorcontrib><creatorcontrib>Baird, H.S.</creatorcontrib><title>Large-scale simulation studies in image pattern recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Many obstacles to progress in image pattern recognition result from the fact that per-class distributions are often too irregular to be well-approximated by simple analytical functions. Simulation studies offer one way to circumvent these obstacles. We present three closely related studies of machine-printed character recognition that rely on synthetic data generated pseudo-randomly in accordance with an explicit stochastic model of document image degradations. The unusually large scale of experiments - involving several million samples that makes this methodology possible have allowed us to compute sharp estimates of the intrinsic difficulty (Bayes risk) of concrete image recognition problems, as well as the asymptotic accuracy and domain of competency of classifiers.</description><subject>Character generation</subject><subject>Character recognition</subject><subject>Concrete</subject><subject>Degradation</subject><subject>Image analysis</subject><subject>Image recognition</subject><subject>Large-scale systems</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Stochastic processes</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo90DtLxEAUBeBBFIyrha1VKsEi6513gpUs6wMCNloPk8lNGMljnUkK_71Zslid4nxcLoeQWwpbSqF45GKrmKSgz0hCC15kXPLinCRAFcvynOWX5CrGbwAqJPCEPJU2tJhFZztMo-_nzk5-HNI4zbXHmPoh9b1tMT3YacIwpAHd2A7-iK7JRWO7iDen3JCvl_3n7i0rP17fd89l5pjWU6atdpWqAUUjnajqpqoYrzhDqRWizSl1SjLlUAktoBLa2lo2BUKNDgrB-Ybcr3cPYfyZMU6m99Fh19kBxzkalnMOlOkFPqzQhTHGgI05hOX78GsomOM8hguzzrPYu9V6RPx3p_IPhvdgNQ</recordid><startdate>19971001</startdate><enddate>19971001</enddate><creator>Tin Kam Ho</creator><creator>Baird, H.S.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19971001</creationdate><title>Large-scale simulation studies in image pattern recognition</title><author>Tin Kam Ho ; Baird, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-7a7cb6d0e4f5c4bdfbb23b32e576eea811c6526ce64740b47aad5f9e0dec09433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Character generation</topic><topic>Character recognition</topic><topic>Concrete</topic><topic>Degradation</topic><topic>Image analysis</topic><topic>Image recognition</topic><topic>Large-scale systems</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tin Kam Ho</creatorcontrib><creatorcontrib>Baird, H.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tin Kam Ho</au><au>Baird, H.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale simulation studies in image pattern recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1997-10-01</date><risdate>1997</risdate><volume>19</volume><issue>10</issue><spage>1067</spage><epage>1079</epage><pages>1067-1079</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Many obstacles to progress in image pattern recognition result from the fact that per-class distributions are often too irregular to be well-approximated by simple analytical functions. Simulation studies offer one way to circumvent these obstacles. We present three closely related studies of machine-printed character recognition that rely on synthetic data generated pseudo-randomly in accordance with an explicit stochastic model of document image degradations. The unusually large scale of experiments - involving several million samples that makes this methodology possible have allowed us to compute sharp estimates of the intrinsic difficulty (Bayes risk) of concrete image recognition problems, as well as the asymptotic accuracy and domain of competency of classifiers.</abstract><pub>IEEE</pub><doi>10.1109/34.625107</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1997-10, Vol.19 (10), p.1067-1079
issn 0162-8828
1939-3539
language eng
recordid cdi_ieee_primary_625107
source IEEE Electronic Library (IEL)
subjects Character generation
Character recognition
Concrete
Degradation
Image analysis
Image recognition
Large-scale systems
Pattern analysis
Pattern recognition
Stochastic processes
title Large-scale simulation studies in image pattern recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20simulation%20studies%20in%20image%20pattern%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Tin%20Kam%20Ho&rft.date=1997-10-01&rft.volume=19&rft.issue=10&rft.spage=1067&rft.epage=1079&rft.pages=1067-1079&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.625107&rft_dat=%3Cproquest_RIE%3E28330127%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28330127&rft_id=info:pmid/&rft_ieee_id=625107&rfr_iscdi=true