Unsupervised learning of well drilling operations: Fuzzy rule-based approach

The paper proposes a method for operation identification in the context of well drilling. This task is usually trusted to domain experts, however, we introduce a fuzzy rule-based classifier for the automatic detection of ongoing operations at a drilling site. The operations of the drilling rig are u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Riid, A., Saadallah, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue
container_start_page 375
container_title
container_volume
creator Riid, A.
Saadallah, N.
description The paper proposes a method for operation identification in the context of well drilling. This task is usually trusted to domain experts, however, we introduce a fuzzy rule-based classifier for the automatic detection of ongoing operations at a drilling site. The operations of the drilling rig are usually monitored and sensory data is stored. The proposed classifier is identified from real data from an already drilled well via unsupervised learning. The results of our experiment are encouraging, since we manage to separate a number of distinct drilling operations and the classifier is transparent to interpretation thus its decisions are understandable to domain experts.
doi_str_mv 10.1109/INES.2012.6249862
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6249862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6249862</ieee_id><sourcerecordid>6249862</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a5e90a83977135614d809f86a0c9c721442bd510d81bc5eee3f67c7351979e743</originalsourceid><addsrcrecordid>eNpVUMlOwzAUNJtEVPoBiEt-wMXP--OGqhYqRXCgnCs3ccDIpJHTgNqvb4BemMtIsx2GkGtgEwCGt4un2cuEM-ATzSVazU_IGI0FqY3gGpU5JRk32lCUmp_98yQ7JxkoKShyhZdk3HUfbMCQACsyUrw2Xd_69BU6X-XRu9SE5i3f1Pm3jzGvUojxVxgybhs2TXeXz_v9fpenPnq6dj8117Zp48r3K3JRu9j58ZFHZDmfLaePtHh-WEzvCxqQbalTHpmzAo0BoTTIyjKsrXasxNJwkJKvKwWssrAulfde1NqURihAg95IMSI3f7NhMFdtCp8u7VbHa8QBQRNS5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised learning of well drilling operations: Fuzzy rule-based approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Riid, A. ; Saadallah, N.</creator><creatorcontrib>Riid, A. ; Saadallah, N.</creatorcontrib><description>The paper proposes a method for operation identification in the context of well drilling. This task is usually trusted to domain experts, however, we introduce a fuzzy rule-based classifier for the automatic detection of ongoing operations at a drilling site. The operations of the drilling rig are usually monitored and sensory data is stored. The proposed classifier is identified from real data from an already drilled well via unsupervised learning. The results of our experiment are encouraging, since we manage to separate a number of distinct drilling operations and the classifier is transparent to interpretation thus its decisions are understandable to domain experts.</description><identifier>ISSN: 1543-9259</identifier><identifier>ISBN: 9781467326940</identifier><identifier>ISBN: 1467326941</identifier><identifier>EISSN: 2767-9462</identifier><identifier>EISBN: 9781467326957</identifier><identifier>EISBN: 9781467326933</identifier><identifier>EISBN: 1467326933</identifier><identifier>EISBN: 146732695X</identifier><identifier>DOI: 10.1109/INES.2012.6249862</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Conferences ; Couplings ; Joints ; Rocks ; Unsupervised learning</subject><ispartof>2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), 2012, p.375-380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6249862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6249862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Riid, A.</creatorcontrib><creatorcontrib>Saadallah, N.</creatorcontrib><title>Unsupervised learning of well drilling operations: Fuzzy rule-based approach</title><title>2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES)</title><addtitle>INES</addtitle><description>The paper proposes a method for operation identification in the context of well drilling. This task is usually trusted to domain experts, however, we introduce a fuzzy rule-based classifier for the automatic detection of ongoing operations at a drilling site. The operations of the drilling rig are usually monitored and sensory data is stored. The proposed classifier is identified from real data from an already drilled well via unsupervised learning. The results of our experiment are encouraging, since we manage to separate a number of distinct drilling operations and the classifier is transparent to interpretation thus its decisions are understandable to domain experts.</description><subject>Accuracy</subject><subject>Conferences</subject><subject>Couplings</subject><subject>Joints</subject><subject>Rocks</subject><subject>Unsupervised learning</subject><issn>1543-9259</issn><issn>2767-9462</issn><isbn>9781467326940</isbn><isbn>1467326941</isbn><isbn>9781467326957</isbn><isbn>9781467326933</isbn><isbn>1467326933</isbn><isbn>146732695X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlOwzAUNJtEVPoBiEt-wMXP--OGqhYqRXCgnCs3ccDIpJHTgNqvb4BemMtIsx2GkGtgEwCGt4un2cuEM-ATzSVazU_IGI0FqY3gGpU5JRk32lCUmp_98yQ7JxkoKShyhZdk3HUfbMCQACsyUrw2Xd_69BU6X-XRu9SE5i3f1Pm3jzGvUojxVxgybhs2TXeXz_v9fpenPnq6dj8117Zp48r3K3JRu9j58ZFHZDmfLaePtHh-WEzvCxqQbalTHpmzAo0BoTTIyjKsrXasxNJwkJKvKwWssrAulfde1NqURihAg95IMSI3f7NhMFdtCp8u7VbHa8QBQRNS5g</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Riid, A.</creator><creator>Saadallah, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Unsupervised learning of well drilling operations: Fuzzy rule-based approach</title><author>Riid, A. ; Saadallah, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a5e90a83977135614d809f86a0c9c721442bd510d81bc5eee3f67c7351979e743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Conferences</topic><topic>Couplings</topic><topic>Joints</topic><topic>Rocks</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Riid, A.</creatorcontrib><creatorcontrib>Saadallah, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Riid, A.</au><au>Saadallah, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised learning of well drilling operations: Fuzzy rule-based approach</atitle><btitle>2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES)</btitle><stitle>INES</stitle><date>2012-06</date><risdate>2012</risdate><spage>375</spage><epage>380</epage><pages>375-380</pages><issn>1543-9259</issn><eissn>2767-9462</eissn><isbn>9781467326940</isbn><isbn>1467326941</isbn><eisbn>9781467326957</eisbn><eisbn>9781467326933</eisbn><eisbn>1467326933</eisbn><eisbn>146732695X</eisbn><abstract>The paper proposes a method for operation identification in the context of well drilling. This task is usually trusted to domain experts, however, we introduce a fuzzy rule-based classifier for the automatic detection of ongoing operations at a drilling site. The operations of the drilling rig are usually monitored and sensory data is stored. The proposed classifier is identified from real data from an already drilled well via unsupervised learning. The results of our experiment are encouraging, since we manage to separate a number of distinct drilling operations and the classifier is transparent to interpretation thus its decisions are understandable to domain experts.</abstract><pub>IEEE</pub><doi>10.1109/INES.2012.6249862</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1543-9259
ispartof 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), 2012, p.375-380
issn 1543-9259
2767-9462
language eng
recordid cdi_ieee_primary_6249862
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Conferences
Couplings
Joints
Rocks
Unsupervised learning
title Unsupervised learning of well drilling operations: Fuzzy rule-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20learning%20of%20well%20drilling%20operations:%20Fuzzy%20rule-based%20approach&rft.btitle=2012%20IEEE%2016th%20International%20Conference%20on%20Intelligent%20Engineering%20Systems%20(INES)&rft.au=Riid,%20A.&rft.date=2012-06&rft.spage=375&rft.epage=380&rft.pages=375-380&rft.issn=1543-9259&rft.eissn=2767-9462&rft.isbn=9781467326940&rft.isbn_list=1467326941&rft_id=info:doi/10.1109/INES.2012.6249862&rft_dat=%3Cieee_6IE%3E6249862%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467326957&rft.eisbn_list=9781467326933&rft.eisbn_list=1467326933&rft.eisbn_list=146732695X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6249862&rfr_iscdi=true