Neural network based identification of hand movements using biomedical signals

This paper proposes a methodology that analysis and classifies the EMG and MMG signals using a linear neural network to control prosthetic members. Finger motions discrimination is the key problem in this study. Thus the emphasis is put on myoelectric signal processing approaches in this paper. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amaral, T. G., Dias, O. P., Wolczowski, A., Fernao Pires, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 125
container_title
container_volume
creator Amaral, T. G.
Dias, O. P.
Wolczowski, A.
Fernao Pires, V.
description This paper proposes a methodology that analysis and classifies the EMG and MMG signals using a linear neural network to control prosthetic members. Finger motions discrimination is the key problem in this study. Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG and MMG signals classification system was established using a linear neural network and it is presented the comparison with the classification based on the LVQ neural network. Experimental results show a promising performance in classification of motions based on both MMG and EMG signals.
doi_str_mv 10.1109/INES.2012.6249816
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6249816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6249816</ieee_id><sourcerecordid>6249816</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1dd6a4bb907cedc875d5fbb1258b2de18b5e395ff43177404506eb31030638e63</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1Loir5AMTGP5Di67eXqCpQqQoLuq_s-KYYmgTFKYi_JxLdMJuzmKNZDCG3wBYAzN2vq9XrgjPgC82ls6DPSOGMBamN4Nopc05m3GhTOqn5xb9OsksyAyVF6bhy16TI-Z1NmQywYkaqCo-DP9AOx-9--KDBZ4w0RezG1KTaj6nvaN_QN99F2vZf2E5Npsecuj0NqW8xTtaB5rTv_CHfkKtmAhYnzsn2cbVdPpebl6f18mFTJsfGEmLUXobgmKkx1taoqJoQgCsbeESwQaFwqmmkAGMkk4ppDAKYYFpY1GJO7v5mEyLuPofU-uFndzpH_AI_iFQ_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network based identification of hand movements using biomedical signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Amaral, T. G. ; Dias, O. P. ; Wolczowski, A. ; Fernao Pires, V.</creator><creatorcontrib>Amaral, T. G. ; Dias, O. P. ; Wolczowski, A. ; Fernao Pires, V.</creatorcontrib><description>This paper proposes a methodology that analysis and classifies the EMG and MMG signals using a linear neural network to control prosthetic members. Finger motions discrimination is the key problem in this study. Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG and MMG signals classification system was established using a linear neural network and it is presented the comparison with the classification based on the LVQ neural network. Experimental results show a promising performance in classification of motions based on both MMG and EMG signals.</description><identifier>ISSN: 1543-9259</identifier><identifier>ISBN: 9781467326940</identifier><identifier>ISBN: 1467326941</identifier><identifier>EISSN: 2767-9462</identifier><identifier>EISBN: 9781467326957</identifier><identifier>EISBN: 9781467326933</identifier><identifier>EISBN: 1467326933</identifier><identifier>EISBN: 146732695X</identifier><identifier>DOI: 10.1109/INES.2012.6249816</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; Electromyography ; EMG and MMG signal classification ; LVQ neural network ; Microphones ; Muscles ; prosthesis system ; Prosthetics ; Support vector machine classification</subject><ispartof>2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), 2012, p.125-129</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6249816$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6249816$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amaral, T. G.</creatorcontrib><creatorcontrib>Dias, O. P.</creatorcontrib><creatorcontrib>Wolczowski, A.</creatorcontrib><creatorcontrib>Fernao Pires, V.</creatorcontrib><title>Neural network based identification of hand movements using biomedical signals</title><title>2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES)</title><addtitle>INES</addtitle><description>This paper proposes a methodology that analysis and classifies the EMG and MMG signals using a linear neural network to control prosthetic members. Finger motions discrimination is the key problem in this study. Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG and MMG signals classification system was established using a linear neural network and it is presented the comparison with the classification based on the LVQ neural network. Experimental results show a promising performance in classification of motions based on both MMG and EMG signals.</description><subject>Biological neural networks</subject><subject>Electromyography</subject><subject>EMG and MMG signal classification</subject><subject>LVQ neural network</subject><subject>Microphones</subject><subject>Muscles</subject><subject>prosthesis system</subject><subject>Prosthetics</subject><subject>Support vector machine classification</subject><issn>1543-9259</issn><issn>2767-9462</issn><isbn>9781467326940</isbn><isbn>1467326941</isbn><isbn>9781467326957</isbn><isbn>9781467326933</isbn><isbn>1467326933</isbn><isbn>146732695X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1Loir5AMTGP5Di67eXqCpQqQoLuq_s-KYYmgTFKYi_JxLdMJuzmKNZDCG3wBYAzN2vq9XrgjPgC82ls6DPSOGMBamN4Nopc05m3GhTOqn5xb9OsksyAyVF6bhy16TI-Z1NmQywYkaqCo-DP9AOx-9--KDBZ4w0RezG1KTaj6nvaN_QN99F2vZf2E5Npsecuj0NqW8xTtaB5rTv_CHfkKtmAhYnzsn2cbVdPpebl6f18mFTJsfGEmLUXobgmKkx1taoqJoQgCsbeESwQaFwqmmkAGMkk4ppDAKYYFpY1GJO7v5mEyLuPofU-uFndzpH_AI_iFQ_</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Amaral, T. G.</creator><creator>Dias, O. P.</creator><creator>Wolczowski, A.</creator><creator>Fernao Pires, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Neural network based identification of hand movements using biomedical signals</title><author>Amaral, T. G. ; Dias, O. P. ; Wolczowski, A. ; Fernao Pires, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1dd6a4bb907cedc875d5fbb1258b2de18b5e395ff43177404506eb31030638e63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological neural networks</topic><topic>Electromyography</topic><topic>EMG and MMG signal classification</topic><topic>LVQ neural network</topic><topic>Microphones</topic><topic>Muscles</topic><topic>prosthesis system</topic><topic>Prosthetics</topic><topic>Support vector machine classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Amaral, T. G.</creatorcontrib><creatorcontrib>Dias, O. P.</creatorcontrib><creatorcontrib>Wolczowski, A.</creatorcontrib><creatorcontrib>Fernao Pires, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amaral, T. G.</au><au>Dias, O. P.</au><au>Wolczowski, A.</au><au>Fernao Pires, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network based identification of hand movements using biomedical signals</atitle><btitle>2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES)</btitle><stitle>INES</stitle><date>2012-06</date><risdate>2012</risdate><spage>125</spage><epage>129</epage><pages>125-129</pages><issn>1543-9259</issn><eissn>2767-9462</eissn><isbn>9781467326940</isbn><isbn>1467326941</isbn><eisbn>9781467326957</eisbn><eisbn>9781467326933</eisbn><eisbn>1467326933</eisbn><eisbn>146732695X</eisbn><abstract>This paper proposes a methodology that analysis and classifies the EMG and MMG signals using a linear neural network to control prosthetic members. Finger motions discrimination is the key problem in this study. Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG and MMG signals classification system was established using a linear neural network and it is presented the comparison with the classification based on the LVQ neural network. Experimental results show a promising performance in classification of motions based on both MMG and EMG signals.</abstract><pub>IEEE</pub><doi>10.1109/INES.2012.6249816</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1543-9259
ispartof 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), 2012, p.125-129
issn 1543-9259
2767-9462
language eng
recordid cdi_ieee_primary_6249816
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological neural networks
Electromyography
EMG and MMG signal classification
LVQ neural network
Microphones
Muscles
prosthesis system
Prosthetics
Support vector machine classification
title Neural network based identification of hand movements using biomedical signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20based%20identification%20of%20hand%20movements%20using%20biomedical%20signals&rft.btitle=2012%20IEEE%2016th%20International%20Conference%20on%20Intelligent%20Engineering%20Systems%20(INES)&rft.au=Amaral,%20T.%20G.&rft.date=2012-06&rft.spage=125&rft.epage=129&rft.pages=125-129&rft.issn=1543-9259&rft.eissn=2767-9462&rft.isbn=9781467326940&rft.isbn_list=1467326941&rft_id=info:doi/10.1109/INES.2012.6249816&rft_dat=%3Cieee_6IE%3E6249816%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467326957&rft.eisbn_list=9781467326933&rft.eisbn_list=1467326933&rft.eisbn_list=146732695X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6249816&rfr_iscdi=true