Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture
Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-clou...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 000066 |
---|---|
container_issue | |
container_start_page | 000059 |
container_title | |
container_volume | |
creator | Soyata, T. Muraleedharan, R. Funai, C. Minseok Kwon Heinzelman, W. |
description | Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers. |
doi_str_mv | 10.1109/ISCC.2012.6249269 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6249269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6249269</ieee_id><sourcerecordid>6249269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a1d442e4bce65209c4ad184f9112833db0296b10057f3f7359e73f1ed779e5ab3</originalsourceid><addsrcrecordid>eNpVkElPwzAUhM0mEUp_AOLiP-Di9-zYMTcUFahUCYntWhznpRhlQVkO_HuW9sJpRvpm5jCMXYBcAEh3tXrK8wVKwIVB7dC4AzZ3NgNtrEILoA9ZgkajsCpzR_8YwjFLIFVSgNLmlJ0Nw4eUMkvRJuwtr7upFK9xiF17zR_J12KMDfHKB-I9hW7bxvGH8WmI7ZZ73nRFrEmE315N485wHwLV1Pu_qO_DexwpjFNP5-yk8vVA873O2Mvt8jm_F-uHu1V-sxYBMzcKD6XWSLoIZFKULmhfQqYrB4CZUmUh0ZkCpExtpSqrUkdWVUCltY5SX6gZu9ztRiLafPax8f3XZn-W-gYxOVnn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soyata, T. ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon ; Heinzelman, W.</creator><creatorcontrib>Soyata, T. ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon ; Heinzelman, W.</creatorcontrib><description>Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.</description><identifier>ISSN: 1530-1346</identifier><identifier>ISBN: 9781467327121</identifier><identifier>ISBN: 1467327123</identifier><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9781467327114</identifier><identifier>EISBN: 1467327115</identifier><identifier>EISBN: 9781467327138</identifier><identifier>EISBN: 1467327131</identifier><identifier>DOI: 10.1109/ISCC.2012.6249269</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Computer architecture ; Face ; Face recognition ; Mobile handsets ; Servers ; Time factors</subject><ispartof>2012 IEEE Symposium on Computers and Communications (ISCC), 2012, p.000059-000066</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-a1d442e4bce65209c4ad184f9112833db0296b10057f3f7359e73f1ed779e5ab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6249269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6249269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soyata, T.</creatorcontrib><creatorcontrib>Muraleedharan, R.</creatorcontrib><creatorcontrib>Funai, C.</creatorcontrib><creatorcontrib>Minseok Kwon</creatorcontrib><creatorcontrib>Heinzelman, W.</creatorcontrib><title>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</title><title>2012 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.</description><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Face</subject><subject>Face recognition</subject><subject>Mobile handsets</subject><subject>Servers</subject><subject>Time factors</subject><issn>1530-1346</issn><issn>2642-7389</issn><isbn>9781467327121</isbn><isbn>1467327123</isbn><isbn>9781467327114</isbn><isbn>1467327115</isbn><isbn>9781467327138</isbn><isbn>1467327131</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkElPwzAUhM0mEUp_AOLiP-Di9-zYMTcUFahUCYntWhznpRhlQVkO_HuW9sJpRvpm5jCMXYBcAEh3tXrK8wVKwIVB7dC4AzZ3NgNtrEILoA9ZgkajsCpzR_8YwjFLIFVSgNLmlJ0Nw4eUMkvRJuwtr7upFK9xiF17zR_J12KMDfHKB-I9hW7bxvGH8WmI7ZZ73nRFrEmE315N485wHwLV1Pu_qO_DexwpjFNP5-yk8vVA873O2Mvt8jm_F-uHu1V-sxYBMzcKD6XWSLoIZFKULmhfQqYrB4CZUmUh0ZkCpExtpSqrUkdWVUCltY5SX6gZu9ztRiLafPax8f3XZn-W-gYxOVnn</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Soyata, T.</creator><creator>Muraleedharan, R.</creator><creator>Funai, C.</creator><creator>Minseok Kwon</creator><creator>Heinzelman, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</title><author>Soyata, T. ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon ; Heinzelman, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a1d442e4bce65209c4ad184f9112833db0296b10057f3f7359e73f1ed779e5ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Face</topic><topic>Face recognition</topic><topic>Mobile handsets</topic><topic>Servers</topic><topic>Time factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Soyata, T.</creatorcontrib><creatorcontrib>Muraleedharan, R.</creatorcontrib><creatorcontrib>Funai, C.</creatorcontrib><creatorcontrib>Minseok Kwon</creatorcontrib><creatorcontrib>Heinzelman, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soyata, T.</au><au>Muraleedharan, R.</au><au>Funai, C.</au><au>Minseok Kwon</au><au>Heinzelman, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</atitle><btitle>2012 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2012-07</date><risdate>2012</risdate><spage>000059</spage><epage>000066</epage><pages>000059-000066</pages><issn>1530-1346</issn><eissn>2642-7389</eissn><isbn>9781467327121</isbn><isbn>1467327123</isbn><eisbn>9781467327114</eisbn><eisbn>1467327115</eisbn><eisbn>9781467327138</eisbn><eisbn>1467327131</eisbn><abstract>Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.</abstract><pub>IEEE</pub><doi>10.1109/ISCC.2012.6249269</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1346 |
ispartof | 2012 IEEE Symposium on Computers and Communications (ISCC), 2012, p.000059-000066 |
issn | 1530-1346 2642-7389 |
language | eng |
recordid | cdi_ieee_primary_6249269 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing Computer architecture Face Face recognition Mobile handsets Servers Time factors |
title | Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cloud-Vision:%20Real-time%20face%20recognition%20using%20a%20mobile-cloudlet-cloud%20acceleration%20architecture&rft.btitle=2012%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Soyata,%20T.&rft.date=2012-07&rft.spage=000059&rft.epage=000066&rft.pages=000059-000066&rft.issn=1530-1346&rft.eissn=2642-7389&rft.isbn=9781467327121&rft.isbn_list=1467327123&rft_id=info:doi/10.1109/ISCC.2012.6249269&rft_dat=%3Cieee_6IE%3E6249269%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467327114&rft.eisbn_list=1467327115&rft.eisbn_list=9781467327138&rft.eisbn_list=1467327131&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6249269&rfr_iscdi=true |