Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture

Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-clou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soyata, T., Muraleedharan, R., Funai, C., Minseok Kwon, Heinzelman, W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 000066
container_issue
container_start_page 000059
container_title
container_volume
creator Soyata, T.
Muraleedharan, R.
Funai, C.
Minseok Kwon
Heinzelman, W.
description Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.
doi_str_mv 10.1109/ISCC.2012.6249269
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6249269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6249269</ieee_id><sourcerecordid>6249269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a1d442e4bce65209c4ad184f9112833db0296b10057f3f7359e73f1ed779e5ab3</originalsourceid><addsrcrecordid>eNpVkElPwzAUhM0mEUp_AOLiP-Di9-zYMTcUFahUCYntWhznpRhlQVkO_HuW9sJpRvpm5jCMXYBcAEh3tXrK8wVKwIVB7dC4AzZ3NgNtrEILoA9ZgkajsCpzR_8YwjFLIFVSgNLmlJ0Nw4eUMkvRJuwtr7upFK9xiF17zR_J12KMDfHKB-I9hW7bxvGH8WmI7ZZ73nRFrEmE315N485wHwLV1Pu_qO_DexwpjFNP5-yk8vVA873O2Mvt8jm_F-uHu1V-sxYBMzcKD6XWSLoIZFKULmhfQqYrB4CZUmUh0ZkCpExtpSqrUkdWVUCltY5SX6gZu9ztRiLafPax8f3XZn-W-gYxOVnn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soyata, T. ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon ; Heinzelman, W.</creator><creatorcontrib>Soyata, T. ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon ; Heinzelman, W.</creatorcontrib><description>Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.</description><identifier>ISSN: 1530-1346</identifier><identifier>ISBN: 9781467327121</identifier><identifier>ISBN: 1467327123</identifier><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9781467327114</identifier><identifier>EISBN: 1467327115</identifier><identifier>EISBN: 9781467327138</identifier><identifier>EISBN: 1467327131</identifier><identifier>DOI: 10.1109/ISCC.2012.6249269</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Computer architecture ; Face ; Face recognition ; Mobile handsets ; Servers ; Time factors</subject><ispartof>2012 IEEE Symposium on Computers and Communications (ISCC), 2012, p.000059-000066</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-a1d442e4bce65209c4ad184f9112833db0296b10057f3f7359e73f1ed779e5ab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6249269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6249269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soyata, T.</creatorcontrib><creatorcontrib>Muraleedharan, R.</creatorcontrib><creatorcontrib>Funai, C.</creatorcontrib><creatorcontrib>Minseok Kwon</creatorcontrib><creatorcontrib>Heinzelman, W.</creatorcontrib><title>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</title><title>2012 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.</description><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Face</subject><subject>Face recognition</subject><subject>Mobile handsets</subject><subject>Servers</subject><subject>Time factors</subject><issn>1530-1346</issn><issn>2642-7389</issn><isbn>9781467327121</isbn><isbn>1467327123</isbn><isbn>9781467327114</isbn><isbn>1467327115</isbn><isbn>9781467327138</isbn><isbn>1467327131</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkElPwzAUhM0mEUp_AOLiP-Di9-zYMTcUFahUCYntWhznpRhlQVkO_HuW9sJpRvpm5jCMXYBcAEh3tXrK8wVKwIVB7dC4AzZ3NgNtrEILoA9ZgkajsCpzR_8YwjFLIFVSgNLmlJ0Nw4eUMkvRJuwtr7upFK9xiF17zR_J12KMDfHKB-I9hW7bxvGH8WmI7ZZ73nRFrEmE315N485wHwLV1Pu_qO_DexwpjFNP5-yk8vVA873O2Mvt8jm_F-uHu1V-sxYBMzcKD6XWSLoIZFKULmhfQqYrB4CZUmUh0ZkCpExtpSqrUkdWVUCltY5SX6gZu9ztRiLafPax8f3XZn-W-gYxOVnn</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Soyata, T.</creator><creator>Muraleedharan, R.</creator><creator>Funai, C.</creator><creator>Minseok Kwon</creator><creator>Heinzelman, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</title><author>Soyata, T. ; Muraleedharan, R. ; Funai, C. ; Minseok Kwon ; Heinzelman, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a1d442e4bce65209c4ad184f9112833db0296b10057f3f7359e73f1ed779e5ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Face</topic><topic>Face recognition</topic><topic>Mobile handsets</topic><topic>Servers</topic><topic>Time factors</topic><toplevel>online_resources</toplevel><creatorcontrib>Soyata, T.</creatorcontrib><creatorcontrib>Muraleedharan, R.</creatorcontrib><creatorcontrib>Funai, C.</creatorcontrib><creatorcontrib>Minseok Kwon</creatorcontrib><creatorcontrib>Heinzelman, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soyata, T.</au><au>Muraleedharan, R.</au><au>Funai, C.</au><au>Minseok Kwon</au><au>Heinzelman, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture</atitle><btitle>2012 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2012-07</date><risdate>2012</risdate><spage>000059</spage><epage>000066</epage><pages>000059-000066</pages><issn>1530-1346</issn><eissn>2642-7389</eissn><isbn>9781467327121</isbn><isbn>1467327123</isbn><eisbn>9781467327114</eisbn><eisbn>1467327115</eisbn><eisbn>9781467327138</eisbn><eisbn>1467327131</eisbn><abstract>Face recognition applications for airport security and surveillance can benefit from the collaborative coupling of mobile and cloud computing as they become widely available today. This paper discusses our work with the design and implementation of face recognition applications using our mobile-cloudlet-cloud architecture named MOCHA and its initial performance results. The challenge lies with how to perform task partitioning from mobile devices to cloud and distribute compute load among cloud servers (cloudlet) to minimize the response time given diverse communication latencies and server compute powers. Our preliminary simulation results show that optimal task partitioning algorithms significantly affect response time with heterogeneous latencies and compute powers. Motivated by these results, we design, implement, and validate the basic functionalities of MOCHA as a proof-of-concept, and develop algorithms that minimize the overall response time for face recognition. Our experimental results demonstrate that high-powered cloudlets are technically feasible and indeed help reduce overall processing time when face recognition applications run on mobile devices using the cloud as the backend servers.</abstract><pub>IEEE</pub><doi>10.1109/ISCC.2012.6249269</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1346
ispartof 2012 IEEE Symposium on Computers and Communications (ISCC), 2012, p.000059-000066
issn 1530-1346
2642-7389
language eng
recordid cdi_ieee_primary_6249269
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cloud computing
Computer architecture
Face
Face recognition
Mobile handsets
Servers
Time factors
title Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cloud-Vision:%20Real-time%20face%20recognition%20using%20a%20mobile-cloudlet-cloud%20acceleration%20architecture&rft.btitle=2012%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Soyata,%20T.&rft.date=2012-07&rft.spage=000059&rft.epage=000066&rft.pages=000059-000066&rft.issn=1530-1346&rft.eissn=2642-7389&rft.isbn=9781467327121&rft.isbn_list=1467327123&rft_id=info:doi/10.1109/ISCC.2012.6249269&rft_dat=%3Cieee_6IE%3E6249269%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467327114&rft.eisbn_list=1467327115&rft.eisbn_list=9781467327138&rft.eisbn_list=1467327131&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6249269&rfr_iscdi=true