Evidential Value of Automated Latent Fingerprint Comparison: An Empirical Approach

Latent prints are routinely recovered from crime scenes and are compared with available databases of known fingerprints for identifying criminals. However, current procedures to compare latent prints to large databases of exemplar (rolled or plain) prints are prone to errors. This suggests caution i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2012-12, Vol.7 (6), p.1752-1765
Hauptverfasser: Nagar, A., Heeseung Choi, Jain, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1765
container_issue 6
container_start_page 1752
container_title IEEE transactions on information forensics and security
container_volume 7
creator Nagar, A.
Heeseung Choi
Jain, A. K.
description Latent prints are routinely recovered from crime scenes and are compared with available databases of known fingerprints for identifying criminals. However, current procedures to compare latent prints to large databases of exemplar (rolled or plain) prints are prone to errors. This suggests caution in making conclusions about a suspect's identity based on a latent fingerprint comparison. A number of attempts have been made to statistically model the utility of a fingerprint comparison in making a correct accept/reject decision or its evidential value. These approaches, however, either make unrealistic assumptions about the model or they lack simple interpretation. We argue that the posterior probability of two fingerprints belonging to different fingers given their match score, referred to as the nonmatch probability (NMP), effectively captures any implicating evidence of the comparison. NMP is computed using state-of-the-art matchers and is easy to interpret. To incorporate the effect of image quality, number of minutiae, and size of the latent on NMP value, we compute the NMP vs. match score plots separately for image pairs (latent and exemplar prints) with different characteristics. Given the paucity of latent fingerprint databases in public domain, we simulate latent prints using two exemplar print databases (NIST SD-14 and Michigan State Police) by cropping regions of three different sizes. We appropriately validate this simulation using four latent databases (NIST SD-27 and three proprietary latent databases) and two state-of-the-art fingerprint matchers to compute their respective match scores. We also discuss a practical scenario where a latent examiner uses the proposed framework to compute the evidential value of a latent-exemplar print pair comparison.
doi_str_mv 10.1109/TIFS.2012.2210216
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6248213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248213</ieee_id><sourcerecordid>10_1109_TIFS_2012_2210216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-f1311a014ba8d4c909d40ccdca395211eeaa6a9b3c3ebf7476d826187ac42cbd3</originalsourceid><addsrcrecordid>eNo9kN1KxDAQRoMouK4-gHiTF2jNJGnaelfKri4UBF29LdMk1Uj_SLuCb2_LLnsz8w3MGYZDyD2wEIClj_vd9j3kDHjIOTAO6oKsIIpUoObh8pxBXJObcfxhTEpQyYq8bX6dsd3ksKGf2Bws7WuaHaa-xckaWsy1m-jWdV_WD97NOe_bAb0b--6JZh3dtIPzTs94Ngy-R_19S65qbEZ7d-pr8rHd7POXoHh93uVZEWjBkimoQQAgA1lhYqROWWok09poFGnEAaxFVJhWQgtb1bGMlUm4giRGLbmujFgTON7Vvh9Hb-tyfrBF_1cCKxcp5SKlXKSUJykz83BknLX2vK-4TDgI8Q_qeF6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evidential Value of Automated Latent Fingerprint Comparison: An Empirical Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Nagar, A. ; Heeseung Choi ; Jain, A. K.</creator><creatorcontrib>Nagar, A. ; Heeseung Choi ; Jain, A. K.</creatorcontrib><description>Latent prints are routinely recovered from crime scenes and are compared with available databases of known fingerprints for identifying criminals. However, current procedures to compare latent prints to large databases of exemplar (rolled or plain) prints are prone to errors. This suggests caution in making conclusions about a suspect's identity based on a latent fingerprint comparison. A number of attempts have been made to statistically model the utility of a fingerprint comparison in making a correct accept/reject decision or its evidential value. These approaches, however, either make unrealistic assumptions about the model or they lack simple interpretation. We argue that the posterior probability of two fingerprints belonging to different fingers given their match score, referred to as the nonmatch probability (NMP), effectively captures any implicating evidence of the comparison. NMP is computed using state-of-the-art matchers and is easy to interpret. To incorporate the effect of image quality, number of minutiae, and size of the latent on NMP value, we compute the NMP vs. match score plots separately for image pairs (latent and exemplar prints) with different characteristics. Given the paucity of latent fingerprint databases in public domain, we simulate latent prints using two exemplar print databases (NIST SD-14 and Michigan State Police) by cropping regions of three different sizes. We appropriately validate this simulation using four latent databases (NIST SD-27 and three proprietary latent databases) and two state-of-the-art fingerprint matchers to compute their respective match scores. We also discuss a practical scenario where a latent examiner uses the proposed framework to compute the evidential value of a latent-exemplar print pair comparison.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2012.2210216</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error analysis ; evidential value ; Fingerprint matching ; Fingerprint recognition ; Forensics ; genuine match distribution ; impostor match distribution ; individuality ; latent print comparison ; non-match probability ; Pattern recognition ; Protocols</subject><ispartof>IEEE transactions on information forensics and security, 2012-12, Vol.7 (6), p.1752-1765</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-f1311a014ba8d4c909d40ccdca395211eeaa6a9b3c3ebf7476d826187ac42cbd3</citedby><cites>FETCH-LOGICAL-c308t-f1311a014ba8d4c909d40ccdca395211eeaa6a9b3c3ebf7476d826187ac42cbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nagar, A.</creatorcontrib><creatorcontrib>Heeseung Choi</creatorcontrib><creatorcontrib>Jain, A. K.</creatorcontrib><title>Evidential Value of Automated Latent Fingerprint Comparison: An Empirical Approach</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Latent prints are routinely recovered from crime scenes and are compared with available databases of known fingerprints for identifying criminals. However, current procedures to compare latent prints to large databases of exemplar (rolled or plain) prints are prone to errors. This suggests caution in making conclusions about a suspect's identity based on a latent fingerprint comparison. A number of attempts have been made to statistically model the utility of a fingerprint comparison in making a correct accept/reject decision or its evidential value. These approaches, however, either make unrealistic assumptions about the model or they lack simple interpretation. We argue that the posterior probability of two fingerprints belonging to different fingers given their match score, referred to as the nonmatch probability (NMP), effectively captures any implicating evidence of the comparison. NMP is computed using state-of-the-art matchers and is easy to interpret. To incorporate the effect of image quality, number of minutiae, and size of the latent on NMP value, we compute the NMP vs. match score plots separately for image pairs (latent and exemplar prints) with different characteristics. Given the paucity of latent fingerprint databases in public domain, we simulate latent prints using two exemplar print databases (NIST SD-14 and Michigan State Police) by cropping regions of three different sizes. We appropriately validate this simulation using four latent databases (NIST SD-27 and three proprietary latent databases) and two state-of-the-art fingerprint matchers to compute their respective match scores. We also discuss a practical scenario where a latent examiner uses the proposed framework to compute the evidential value of a latent-exemplar print pair comparison.</description><subject>Error analysis</subject><subject>evidential value</subject><subject>Fingerprint matching</subject><subject>Fingerprint recognition</subject><subject>Forensics</subject><subject>genuine match distribution</subject><subject>impostor match distribution</subject><subject>individuality</subject><subject>latent print comparison</subject><subject>non-match probability</subject><subject>Pattern recognition</subject><subject>Protocols</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KxDAQRoMouK4-gHiTF2jNJGnaelfKri4UBF29LdMk1Uj_SLuCb2_LLnsz8w3MGYZDyD2wEIClj_vd9j3kDHjIOTAO6oKsIIpUoObh8pxBXJObcfxhTEpQyYq8bX6dsd3ksKGf2Bws7WuaHaa-xckaWsy1m-jWdV_WD97NOe_bAb0b--6JZh3dtIPzTs94Ngy-R_19S65qbEZ7d-pr8rHd7POXoHh93uVZEWjBkimoQQAgA1lhYqROWWok09poFGnEAaxFVJhWQgtb1bGMlUm4giRGLbmujFgTON7Vvh9Hb-tyfrBF_1cCKxcp5SKlXKSUJykz83BknLX2vK-4TDgI8Q_qeF6s</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Nagar, A.</creator><creator>Heeseung Choi</creator><creator>Jain, A. K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121201</creationdate><title>Evidential Value of Automated Latent Fingerprint Comparison: An Empirical Approach</title><author>Nagar, A. ; Heeseung Choi ; Jain, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-f1311a014ba8d4c909d40ccdca395211eeaa6a9b3c3ebf7476d826187ac42cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Error analysis</topic><topic>evidential value</topic><topic>Fingerprint matching</topic><topic>Fingerprint recognition</topic><topic>Forensics</topic><topic>genuine match distribution</topic><topic>impostor match distribution</topic><topic>individuality</topic><topic>latent print comparison</topic><topic>non-match probability</topic><topic>Pattern recognition</topic><topic>Protocols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagar, A.</creatorcontrib><creatorcontrib>Heeseung Choi</creatorcontrib><creatorcontrib>Jain, A. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nagar, A.</au><au>Heeseung Choi</au><au>Jain, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidential Value of Automated Latent Fingerprint Comparison: An Empirical Approach</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>1752</spage><epage>1765</epage><pages>1752-1765</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Latent prints are routinely recovered from crime scenes and are compared with available databases of known fingerprints for identifying criminals. However, current procedures to compare latent prints to large databases of exemplar (rolled or plain) prints are prone to errors. This suggests caution in making conclusions about a suspect's identity based on a latent fingerprint comparison. A number of attempts have been made to statistically model the utility of a fingerprint comparison in making a correct accept/reject decision or its evidential value. These approaches, however, either make unrealistic assumptions about the model or they lack simple interpretation. We argue that the posterior probability of two fingerprints belonging to different fingers given their match score, referred to as the nonmatch probability (NMP), effectively captures any implicating evidence of the comparison. NMP is computed using state-of-the-art matchers and is easy to interpret. To incorporate the effect of image quality, number of minutiae, and size of the latent on NMP value, we compute the NMP vs. match score plots separately for image pairs (latent and exemplar prints) with different characteristics. Given the paucity of latent fingerprint databases in public domain, we simulate latent prints using two exemplar print databases (NIST SD-14 and Michigan State Police) by cropping regions of three different sizes. We appropriately validate this simulation using four latent databases (NIST SD-27 and three proprietary latent databases) and two state-of-the-art fingerprint matchers to compute their respective match scores. We also discuss a practical scenario where a latent examiner uses the proposed framework to compute the evidential value of a latent-exemplar print pair comparison.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2012.2210216</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2012-12, Vol.7 (6), p.1752-1765
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_6248213
source IEEE Electronic Library (IEL)
subjects Error analysis
evidential value
Fingerprint matching
Fingerprint recognition
Forensics
genuine match distribution
impostor match distribution
individuality
latent print comparison
non-match probability
Pattern recognition
Protocols
title Evidential Value of Automated Latent Fingerprint Comparison: An Empirical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidential%20Value%20of%20Automated%20Latent%20Fingerprint%20Comparison:%20An%20Empirical%20Approach&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Nagar,%20A.&rft.date=2012-12-01&rft.volume=7&rft.issue=6&rft.spage=1752&rft.epage=1765&rft.pages=1752-1765&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2012.2210216&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2012_2210216%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6248213&rfr_iscdi=true