A data driven method for feature transformation

Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dikmen, M., Hoiem, D., Huang, T. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3321
container_issue
container_start_page 3314
container_title
container_volume
creator Dikmen, M.
Hoiem, D.
Huang, T. S.
description Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented dataset. In this work we propose a data driven, local histogram based feature extraction method that reduces the manual intervention during the feature computation process and improves on the performance of widely used gradient histogram based features (e.g., HOG). We demonstrate favorable object detection results against HOG on the Inria Pedestrian[7], Pascal 2007[10] data.
doi_str_mv 10.1109/CVPR.2012.6248069
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6248069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248069</ieee_id><sourcerecordid>6248069</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-66b0d7a313dd35b5fce53e7bc78940851b82793d7481eb523739a2a2770b60043</originalsourceid><addsrcrecordid>eNo1j91KxDAUhCMquK59APEmL9DuOfnP5bL4BwuKqLdLsjnFim0ljYJvb8F1bob5GAaGsUuEBhH8avP6-NQIQNEYoRwYf8TOURkrUQgnjlnlrfvPRp2wBYKRtfHoz1g1Te8wa26AFwu2WvMUSuApd9808J7K25h4O2beUihfmXjJYZhm0IfSjcMFO23Dx0TVwZfs5eb6eXNXbx9u7zfrbd2h1aU2JkKyQaJMSeqo2z1pSTburfMKnMbohPUyWeWQohbSSh9EENZCNABKLtnV325HRLvP3PUh_-wOf-Uv6-NFAw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A data driven method for feature transformation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dikmen, M. ; Hoiem, D. ; Huang, T. S.</creator><creatorcontrib>Dikmen, M. ; Hoiem, D. ; Huang, T. S.</creatorcontrib><description>Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented dataset. In this work we propose a data driven, local histogram based feature extraction method that reduces the manual intervention during the feature computation process and improves on the performance of widely used gradient histogram based features (e.g., HOG). We demonstrate favorable object detection results against HOG on the Inria Pedestrian[7], Pascal 2007[10] data.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6248069</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Dictionaries ; Feature extraction ; Histograms ; Object detection ; Testing ; Training</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3314-3321</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dikmen, M.</creatorcontrib><creatorcontrib>Hoiem, D.</creatorcontrib><creatorcontrib>Huang, T. S.</creatorcontrib><title>A data driven method for feature transformation</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented dataset. In this work we propose a data driven, local histogram based feature extraction method that reduces the manual intervention during the feature computation process and improves on the performance of widely used gradient histogram based features (e.g., HOG). We demonstrate favorable object detection results against HOG on the Inria Pedestrian[7], Pascal 2007[10] data.</description><subject>Clustering algorithms</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Object detection</subject><subject>Testing</subject><subject>Training</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KxDAUhCMquK59APEmL9DuOfnP5bL4BwuKqLdLsjnFim0ljYJvb8F1bob5GAaGsUuEBhH8avP6-NQIQNEYoRwYf8TOURkrUQgnjlnlrfvPRp2wBYKRtfHoz1g1Te8wa26AFwu2WvMUSuApd9808J7K25h4O2beUihfmXjJYZhm0IfSjcMFO23Dx0TVwZfs5eb6eXNXbx9u7zfrbd2h1aU2JkKyQaJMSeqo2z1pSTburfMKnMbohPUyWeWQohbSSh9EENZCNABKLtnV325HRLvP3PUh_-wOf-Uv6-NFAw</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Dikmen, M.</creator><creator>Hoiem, D.</creator><creator>Huang, T. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>A data driven method for feature transformation</title><author>Dikmen, M. ; Hoiem, D. ; Huang, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-66b0d7a313dd35b5fce53e7bc78940851b82793d7481eb523739a2a2770b60043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clustering algorithms</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Object detection</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Dikmen, M.</creatorcontrib><creatorcontrib>Hoiem, D.</creatorcontrib><creatorcontrib>Huang, T. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dikmen, M.</au><au>Hoiem, D.</au><au>Huang, T. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A data driven method for feature transformation</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>3314</spage><epage>3321</epage><pages>3314-3321</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Most image understanding algorithms begin with the extraction of information thought to be relevant to the particular task. This is commonly known as feature extraction and has, up to this date, been a largely manual process, where a reasonable method is chosen through validation on the experimented dataset. In this work we propose a data driven, local histogram based feature extraction method that reduces the manual intervention during the feature computation process and improves on the performance of widely used gradient histogram based features (e.g., HOG). We demonstrate favorable object detection results against HOG on the Inria Pedestrian[7], Pascal 2007[10] data.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6248069</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3314-3321
issn 1063-6919
language eng
recordid cdi_ieee_primary_6248069
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Dictionaries
Feature extraction
Histograms
Object detection
Testing
Training
title A data driven method for feature transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20data%20driven%20method%20for%20feature%20transformation&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Dikmen,%20M.&rft.date=2012-06&rft.spage=3314&rft.epage=3321&rft.pages=3314-3321&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6248069&rft_dat=%3Cieee_6IE%3E6248069%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6248069&rfr_iscdi=true