(Unseen) event recognition via semantic compositionality
Since high-level events in images (e.g. "dinner", "motorcycle stunt", etc.) may not be directly correlated with their visual appearance, low-level visual features do not carry enough semantics to classify such events satisfactorily. This paper explores a fully compositional appro...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3068 |
---|---|
container_issue | |
container_start_page | 3061 |
container_title | |
container_volume | |
creator | Stottinger, J. Uijlings, J. R. R. Pandey, A. K. Sebe, N. Giunchiglia, F. |
description | Since high-level events in images (e.g. "dinner", "motorcycle stunt", etc.) may not be directly correlated with their visual appearance, low-level visual features do not carry enough semantics to classify such events satisfactorily. This paper explores a fully compositional approach for event based image retrieval which is able to overcome this shortcoming. Furthermore, the approach is fully scalable in both adding new events and new primitives. Using the Pascal VOC 2007 dataset, our contributions are the following: (i) We apply the Faceted Analysis-Synthesis Theory (FAST) to build a hierarchy of 228 high-level events. (ii) We show that rule-based classifiers are better suited for compositional recognition of events than SVMs. In addition, rule-based classifiers provide semantically meaningful event descriptions which help bridging the semantic gap. (iii) We demonstrate that compositionality enables unseen event recognition: we can use rules learned from non-visual cues, together with object detectors to get reasonable performance on unseen event categories. |
doi_str_mv | 10.1109/CVPR.2012.6248037 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6248037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248037</ieee_id><sourcerecordid>6248037</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-7b0753a6ef40bbc33326b243e579301d2c26fe329aaf3911e24f8bba6aa193203</originalsourceid><addsrcrecordid>eNo1j81Lw0AUxFdUsNb8AeIlRz0k7ntvux9HCX5BQRHrtezGF1lpNqUbCv3vLVrnMgy_YWCEuARZA0h323y8vtUoAWuNykoyR-IclDYEiBaPReGM_c9anYgJSE2VduDORJHzt9xr35AOJ8JeL1JmTjclbzmN5Ybb4SvFMQ6p3EZfZu59GmNbtkO_HvIv8Ks47i7EaedXmYuDT8Xi4f69earmL4_Pzd28igh2rEyQZkZec6dkCC0RoQ6oiGfGkYRPbFF3TOi878gBMKrOhuC19-AIJU3F1d9uZOblehN7v9ktD8fpBzbiSV8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>(Unseen) event recognition via semantic compositionality</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stottinger, J. ; Uijlings, J. R. R. ; Pandey, A. K. ; Sebe, N. ; Giunchiglia, F.</creator><creatorcontrib>Stottinger, J. ; Uijlings, J. R. R. ; Pandey, A. K. ; Sebe, N. ; Giunchiglia, F.</creatorcontrib><description>Since high-level events in images (e.g. "dinner", "motorcycle stunt", etc.) may not be directly correlated with their visual appearance, low-level visual features do not carry enough semantics to classify such events satisfactorily. This paper explores a fully compositional approach for event based image retrieval which is able to overcome this shortcoming. Furthermore, the approach is fully scalable in both adding new events and new primitives. Using the Pascal VOC 2007 dataset, our contributions are the following: (i) We apply the Faceted Analysis-Synthesis Theory (FAST) to build a hierarchy of 228 high-level events. (ii) We show that rule-based classifiers are better suited for compositional recognition of events than SVMs. In addition, rule-based classifiers provide semantically meaningful event descriptions which help bridging the semantic gap. (iii) We demonstrate that compositionality enables unseen event recognition: we can use rules learned from non-visual cues, together with object detectors to get reasonable performance on unseen event categories.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6248037</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Humans ; Motorcycles ; Semantics ; Support vector machines ; Training ; Visualization</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3061-3068</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stottinger, J.</creatorcontrib><creatorcontrib>Uijlings, J. R. R.</creatorcontrib><creatorcontrib>Pandey, A. K.</creatorcontrib><creatorcontrib>Sebe, N.</creatorcontrib><creatorcontrib>Giunchiglia, F.</creatorcontrib><title>(Unseen) event recognition via semantic compositionality</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Since high-level events in images (e.g. "dinner", "motorcycle stunt", etc.) may not be directly correlated with their visual appearance, low-level visual features do not carry enough semantics to classify such events satisfactorily. This paper explores a fully compositional approach for event based image retrieval which is able to overcome this shortcoming. Furthermore, the approach is fully scalable in both adding new events and new primitives. Using the Pascal VOC 2007 dataset, our contributions are the following: (i) We apply the Faceted Analysis-Synthesis Theory (FAST) to build a hierarchy of 228 high-level events. (ii) We show that rule-based classifiers are better suited for compositional recognition of events than SVMs. In addition, rule-based classifiers provide semantically meaningful event descriptions which help bridging the semantic gap. (iii) We demonstrate that compositionality enables unseen event recognition: we can use rules learned from non-visual cues, together with object detectors to get reasonable performance on unseen event categories.</description><subject>Detectors</subject><subject>Humans</subject><subject>Motorcycles</subject><subject>Semantics</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Visualization</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Lw0AUxFdUsNb8AeIlRz0k7ntvux9HCX5BQRHrtezGF1lpNqUbCv3vLVrnMgy_YWCEuARZA0h323y8vtUoAWuNykoyR-IclDYEiBaPReGM_c9anYgJSE2VduDORJHzt9xr35AOJ8JeL1JmTjclbzmN5Ybb4SvFMQ6p3EZfZu59GmNbtkO_HvIv8Ks47i7EaedXmYuDT8Xi4f69earmL4_Pzd28igh2rEyQZkZec6dkCC0RoQ6oiGfGkYRPbFF3TOi878gBMKrOhuC19-AIJU3F1d9uZOblehN7v9ktD8fpBzbiSV8</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Stottinger, J.</creator><creator>Uijlings, J. R. R.</creator><creator>Pandey, A. K.</creator><creator>Sebe, N.</creator><creator>Giunchiglia, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>(Unseen) event recognition via semantic compositionality</title><author>Stottinger, J. ; Uijlings, J. R. R. ; Pandey, A. K. ; Sebe, N. ; Giunchiglia, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-7b0753a6ef40bbc33326b243e579301d2c26fe329aaf3911e24f8bba6aa193203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Detectors</topic><topic>Humans</topic><topic>Motorcycles</topic><topic>Semantics</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Stottinger, J.</creatorcontrib><creatorcontrib>Uijlings, J. R. R.</creatorcontrib><creatorcontrib>Pandey, A. K.</creatorcontrib><creatorcontrib>Sebe, N.</creatorcontrib><creatorcontrib>Giunchiglia, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stottinger, J.</au><au>Uijlings, J. R. R.</au><au>Pandey, A. K.</au><au>Sebe, N.</au><au>Giunchiglia, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>(Unseen) event recognition via semantic compositionality</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>3061</spage><epage>3068</epage><pages>3061-3068</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Since high-level events in images (e.g. "dinner", "motorcycle stunt", etc.) may not be directly correlated with their visual appearance, low-level visual features do not carry enough semantics to classify such events satisfactorily. This paper explores a fully compositional approach for event based image retrieval which is able to overcome this shortcoming. Furthermore, the approach is fully scalable in both adding new events and new primitives. Using the Pascal VOC 2007 dataset, our contributions are the following: (i) We apply the Faceted Analysis-Synthesis Theory (FAST) to build a hierarchy of 228 high-level events. (ii) We show that rule-based classifiers are better suited for compositional recognition of events than SVMs. In addition, rule-based classifiers provide semantically meaningful event descriptions which help bridging the semantic gap. (iii) We demonstrate that compositionality enables unseen event recognition: we can use rules learned from non-visual cues, together with object detectors to get reasonable performance on unseen event categories.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6248037</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3061-3068 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_6248037 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Detectors Humans Motorcycles Semantics Support vector machines Training Visualization |
title | (Unseen) event recognition via semantic compositionality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=(Unseen)%20event%20recognition%20via%20semantic%20compositionality&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Stottinger,%20J.&rft.date=2012-01-01&rft.spage=3061&rft.epage=3068&rft.pages=3061-3068&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6248037&rft_dat=%3Cieee_6IE%3E6248037%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6248037&rfr_iscdi=true |