On partial least squares in head pose estimation: How to simultaneously deal with misalignment
Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2609 |
---|---|
container_issue | |
container_start_page | 2602 |
container_title | |
container_volume | |
creator | Haj, M. A. Gonzalez, J. Davis, L. S. |
description | Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors. |
doi_str_mv | 10.1109/CVPR.2012.6247979 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247979</ieee_id><sourcerecordid>6247979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-18c5618e10cac2520da46083f7543d48f132a3c55c8e87b62889d0c10755e78e3</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhFdUsNY8gHizL5C4_2725J0Ua4VCRdRLy5r8sSs5md1Q-vYGrHMzDAwfwxByDSwDYPZ28f78knEGPFM811bbE3IJudICODf8lCRWm_-s8jMyA6ZEqizYC5KE8M0mTQ1m-Yx8bFrauyF6V9MaXYg0_IxuwEB9S3foStp3ASmG6BsXfdfe0VW3p7GjwTdjHV2L3RjqAy1xIux93NHGB1f7r7bBNl6R88rVAZOjz8nb8uF1sUrXm8enxf069RxMTMEUUoFBYIUruOSsdLliRlRa5qLMTQWCO1FIWRg0-lNxY2zJCmBaStQGxZzc_HE9Im77YRo7HLbHe8QvDE9W8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haj, M. A. ; Gonzalez, J. ; Davis, L. S.</creator><creatorcontrib>Haj, M. A. ; Gonzalez, J. ; Davis, L. S.</creatorcontrib><description>Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Face ; Kernel ; Magnetic heads ; Matrix decomposition ; Vectors</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2602-2609</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haj, M. A.</creatorcontrib><creatorcontrib>Gonzalez, J.</creatorcontrib><creatorcontrib>Davis, L. S.</creatorcontrib><title>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.</description><subject>Estimation</subject><subject>Face</subject><subject>Kernel</subject><subject>Magnetic heads</subject><subject>Matrix decomposition</subject><subject>Vectors</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AYhFdUsNY8gHizL5C4_2725J0Ua4VCRdRLy5r8sSs5md1Q-vYGrHMzDAwfwxByDSwDYPZ28f78knEGPFM811bbE3IJudICODf8lCRWm_-s8jMyA6ZEqizYC5KE8M0mTQ1m-Yx8bFrauyF6V9MaXYg0_IxuwEB9S3foStp3ASmG6BsXfdfe0VW3p7GjwTdjHV2L3RjqAy1xIux93NHGB1f7r7bBNl6R88rVAZOjz8nb8uF1sUrXm8enxf069RxMTMEUUoFBYIUruOSsdLliRlRa5qLMTQWCO1FIWRg0-lNxY2zJCmBaStQGxZzc_HE9Im77YRo7HLbHe8QvDE9W8Q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Haj, M. A.</creator><creator>Gonzalez, J.</creator><creator>Davis, L. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</title><author>Haj, M. A. ; Gonzalez, J. ; Davis, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-18c5618e10cac2520da46083f7543d48f132a3c55c8e87b62889d0c10755e78e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Estimation</topic><topic>Face</topic><topic>Kernel</topic><topic>Magnetic heads</topic><topic>Matrix decomposition</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Haj, M. A.</creatorcontrib><creatorcontrib>Gonzalez, J.</creatorcontrib><creatorcontrib>Davis, L. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haj, M. A.</au><au>Gonzalez, J.</au><au>Davis, L. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2602</spage><epage>2609</epage><pages>2602-2609</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247979</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2602-2609 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_6247979 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Estimation Face Kernel Magnetic heads Matrix decomposition Vectors |
title | On partial least squares in head pose estimation: How to simultaneously deal with misalignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20partial%20least%20squares%20in%20head%20pose%20estimation:%20How%20to%20simultaneously%20deal%20with%20misalignment&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Haj,%20M.%20A.&rft.date=2012-01-01&rft.spage=2602&rft.epage=2609&rft.pages=2602-2609&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247979&rft_dat=%3Cieee_6IE%3E6247979%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247979&rfr_iscdi=true |