On partial least squares in head pose estimation: How to simultaneously deal with misalignment

Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haj, M. A., Gonzalez, J., Davis, L. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2609
container_issue
container_start_page 2602
container_title
container_volume
creator Haj, M. A.
Gonzalez, J.
Davis, L. S.
description Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.
doi_str_mv 10.1109/CVPR.2012.6247979
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247979</ieee_id><sourcerecordid>6247979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-18c5618e10cac2520da46083f7543d48f132a3c55c8e87b62889d0c10755e78e3</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhFdUsNY8gHizL5C4_2725J0Ua4VCRdRLy5r8sSs5md1Q-vYGrHMzDAwfwxByDSwDYPZ28f78knEGPFM811bbE3IJudICODf8lCRWm_-s8jMyA6ZEqizYC5KE8M0mTQ1m-Yx8bFrauyF6V9MaXYg0_IxuwEB9S3foStp3ASmG6BsXfdfe0VW3p7GjwTdjHV2L3RjqAy1xIux93NHGB1f7r7bBNl6R88rVAZOjz8nb8uF1sUrXm8enxf069RxMTMEUUoFBYIUruOSsdLliRlRa5qLMTQWCO1FIWRg0-lNxY2zJCmBaStQGxZzc_HE9Im77YRo7HLbHe8QvDE9W8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haj, M. A. ; Gonzalez, J. ; Davis, L. S.</creator><creatorcontrib>Haj, M. A. ; Gonzalez, J. ; Davis, L. S.</creatorcontrib><description>Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Face ; Kernel ; Magnetic heads ; Matrix decomposition ; Vectors</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2602-2609</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haj, M. A.</creatorcontrib><creatorcontrib>Gonzalez, J.</creatorcontrib><creatorcontrib>Davis, L. S.</creatorcontrib><title>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.</description><subject>Estimation</subject><subject>Face</subject><subject>Kernel</subject><subject>Magnetic heads</subject><subject>Matrix decomposition</subject><subject>Vectors</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKw0AYhFdUsNY8gHizL5C4_2725J0Ua4VCRdRLy5r8sSs5md1Q-vYGrHMzDAwfwxByDSwDYPZ28f78knEGPFM811bbE3IJudICODf8lCRWm_-s8jMyA6ZEqizYC5KE8M0mTQ1m-Yx8bFrauyF6V9MaXYg0_IxuwEB9S3foStp3ASmG6BsXfdfe0VW3p7GjwTdjHV2L3RjqAy1xIux93NHGB1f7r7bBNl6R88rVAZOjz8nb8uF1sUrXm8enxf069RxMTMEUUoFBYIUruOSsdLliRlRa5qLMTQWCO1FIWRg0-lNxY2zJCmBaStQGxZzc_HE9Im77YRo7HLbHe8QvDE9W8Q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Haj, M. A.</creator><creator>Gonzalez, J.</creator><creator>Davis, L. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</title><author>Haj, M. A. ; Gonzalez, J. ; Davis, L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-18c5618e10cac2520da46083f7543d48f132a3c55c8e87b62889d0c10755e78e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Estimation</topic><topic>Face</topic><topic>Kernel</topic><topic>Magnetic heads</topic><topic>Matrix decomposition</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Haj, M. A.</creatorcontrib><creatorcontrib>Gonzalez, J.</creatorcontrib><creatorcontrib>Davis, L. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haj, M. A.</au><au>Gonzalez, J.</au><au>Davis, L. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On partial least squares in head pose estimation: How to simultaneously deal with misalignment</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2602</spage><epage>2609</epage><pages>2602-2609</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247979</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2602-2609
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247979
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Estimation
Face
Kernel
Magnetic heads
Matrix decomposition
Vectors
title On partial least squares in head pose estimation: How to simultaneously deal with misalignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20partial%20least%20squares%20in%20head%20pose%20estimation:%20How%20to%20simultaneously%20deal%20with%20misalignment&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Haj,%20M.%20A.&rft.date=2012-01-01&rft.spage=2602&rft.epage=2609&rft.pages=2602-2609&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247979&rft_dat=%3Cieee_6IE%3E6247979%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247979&rfr_iscdi=true