Active attentional sampling for speed-up of background subtraction

In this paper, we present an active sampling method to speed up conventional pixel-wise background subtraction algorithms. The proposed active sampling strategy is designed to focus on attentional region such as foreground regions. The attentional region is estimated by detection results of previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hyung Jin Chang, Hawook Jeong, Jin Young Choi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2095
container_issue
container_start_page 2088
container_title
container_volume
creator Hyung Jin Chang
Hawook Jeong
Jin Young Choi
description In this paper, we present an active sampling method to speed up conventional pixel-wise background subtraction algorithms. The proposed active sampling strategy is designed to focus on attentional region such as foreground regions. The attentional region is estimated by detection results of previous frame in a recursive probabilistic way. For the estimation of the attentional region, we propose a foreground probability map based on temporal, spatial, and frequency properties of foregrounds. By using this foreground probability map, active attentional sampling scheme is developed to make a minimal sampling mask covering almost foregrounds. The effectiveness of the proposed active sampling method is shown through various experiments. The proposed masking method successfully speeds up pixel-wise background subtraction methods approximately 6.6 times without deteriorating detection performance. Also realtime detection with Full HD video is successfully achieved through various conventional background subtraction algorithms.
doi_str_mv 10.1109/CVPR.2012.6247914
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247914</ieee_id><sourcerecordid>6247914</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b8f1da7df23f913a54e4770815823fa5e0c8ab860b37b6336c9023b47e4ea8e53</originalsourceid><addsrcrecordid>eNo1UM1KxDAYjKjguvYBxEteoDVfkubnuBb_YEER9bok7Zel2m1LkxV8eyuucxlmmJnDEHIJrABg9rp6f34pOANeKC61BXlEzkEqLYBzw49JZrX510qekAUwJXJlwZ6RLMYPNmNOMMsX5GZVp_YLqUsJ-9QOvetodLuxa_stDcNE44jY5PuRDoF6V39up2HfNzTufZpc_du4IKfBdRGzAy_J293ta_WQr5_uH6vVOm9Blyn3JkDjdBO4CBaEKyVKrZmB0syOK5HVxnmjmBfaKyFUbRkXXmqU6AyWYkmu_nZbRNyMU7tz0_fmcIH4Ad3WTU4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Active attentional sampling for speed-up of background subtraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyung Jin Chang ; Hawook Jeong ; Jin Young Choi</creator><creatorcontrib>Hyung Jin Chang ; Hawook Jeong ; Jin Young Choi</creatorcontrib><description>In this paper, we present an active sampling method to speed up conventional pixel-wise background subtraction algorithms. The proposed active sampling strategy is designed to focus on attentional region such as foreground regions. The attentional region is estimated by detection results of previous frame in a recursive probabilistic way. For the estimation of the attentional region, we propose a foreground probability map based on temporal, spatial, and frequency properties of foregrounds. By using this foreground probability map, active attentional sampling scheme is developed to make a minimal sampling mask covering almost foregrounds. The effectiveness of the proposed active sampling method is shown through various experiments. The proposed masking method successfully speeds up pixel-wise background subtraction methods approximately 6.6 times without deteriorating detection performance. Also realtime detection with Full HD video is successfully achieved through various conventional background subtraction algorithms.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247914</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Estimation ; High definition video ; Indexes ; Monte Carlo methods ; Probabilistic logic ; Real time systems</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2088-2095</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyung Jin Chang</creatorcontrib><creatorcontrib>Hawook Jeong</creatorcontrib><creatorcontrib>Jin Young Choi</creatorcontrib><title>Active attentional sampling for speed-up of background subtraction</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>In this paper, we present an active sampling method to speed up conventional pixel-wise background subtraction algorithms. The proposed active sampling strategy is designed to focus on attentional region such as foreground regions. The attentional region is estimated by detection results of previous frame in a recursive probabilistic way. For the estimation of the attentional region, we propose a foreground probability map based on temporal, spatial, and frequency properties of foregrounds. By using this foreground probability map, active attentional sampling scheme is developed to make a minimal sampling mask covering almost foregrounds. The effectiveness of the proposed active sampling method is shown through various experiments. The proposed masking method successfully speeds up pixel-wise background subtraction methods approximately 6.6 times without deteriorating detection performance. Also realtime detection with Full HD video is successfully achieved through various conventional background subtraction algorithms.</description><subject>Educational institutions</subject><subject>Estimation</subject><subject>High definition video</subject><subject>Indexes</subject><subject>Monte Carlo methods</subject><subject>Probabilistic logic</subject><subject>Real time systems</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1KxDAYjKjguvYBxEteoDVfkubnuBb_YEER9bok7Zel2m1LkxV8eyuucxlmmJnDEHIJrABg9rp6f34pOANeKC61BXlEzkEqLYBzw49JZrX510qekAUwJXJlwZ6RLMYPNmNOMMsX5GZVp_YLqUsJ-9QOvetodLuxa_stDcNE44jY5PuRDoF6V39up2HfNzTufZpc_du4IKfBdRGzAy_J293ta_WQr5_uH6vVOm9Blyn3JkDjdBO4CBaEKyVKrZmB0syOK5HVxnmjmBfaKyFUbRkXXmqU6AyWYkmu_nZbRNyMU7tz0_fmcIH4Ad3WTU4</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Hyung Jin Chang</creator><creator>Hawook Jeong</creator><creator>Jin Young Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Active attentional sampling for speed-up of background subtraction</title><author>Hyung Jin Chang ; Hawook Jeong ; Jin Young Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b8f1da7df23f913a54e4770815823fa5e0c8ab860b37b6336c9023b47e4ea8e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Educational institutions</topic><topic>Estimation</topic><topic>High definition video</topic><topic>Indexes</topic><topic>Monte Carlo methods</topic><topic>Probabilistic logic</topic><topic>Real time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyung Jin Chang</creatorcontrib><creatorcontrib>Hawook Jeong</creatorcontrib><creatorcontrib>Jin Young Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyung Jin Chang</au><au>Hawook Jeong</au><au>Jin Young Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Active attentional sampling for speed-up of background subtraction</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>2088</spage><epage>2095</epage><pages>2088-2095</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>In this paper, we present an active sampling method to speed up conventional pixel-wise background subtraction algorithms. The proposed active sampling strategy is designed to focus on attentional region such as foreground regions. The attentional region is estimated by detection results of previous frame in a recursive probabilistic way. For the estimation of the attentional region, we propose a foreground probability map based on temporal, spatial, and frequency properties of foregrounds. By using this foreground probability map, active attentional sampling scheme is developed to make a minimal sampling mask covering almost foregrounds. The effectiveness of the proposed active sampling method is shown through various experiments. The proposed masking method successfully speeds up pixel-wise background subtraction methods approximately 6.6 times without deteriorating detection performance. Also realtime detection with Full HD video is successfully achieved through various conventional background subtraction algorithms.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247914</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.2088-2095
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247914
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Estimation
High definition video
Indexes
Monte Carlo methods
Probabilistic logic
Real time systems
title Active attentional sampling for speed-up of background subtraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Active%20attentional%20sampling%20for%20speed-up%20of%20background%20subtraction&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Hyung%20Jin%20Chang&rft.date=2012-06&rft.spage=2088&rft.epage=2095&rft.pages=2088-2095&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247914&rft_dat=%3Cieee_6IE%3E6247914%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247914&rfr_iscdi=true