Hand tracking by binary quadratic programming and its application to retail activity recognition

Substantial ambiguities arise in hand tracking due to issues such as small hand size, deformable hand shapes and similar hand appearances. These issues have greatly limited the capability of current multi-target tracking techniques in hand tracking. As an example, state-of-the-art approaches for peo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trinh, H., Quanfu Fan, Gabbur, P., Pankanti, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1909
container_issue
container_start_page 1902
container_title
container_volume
creator Trinh, H.
Quanfu Fan
Gabbur, P.
Pankanti, S.
description Substantial ambiguities arise in hand tracking due to issues such as small hand size, deformable hand shapes and similar hand appearances. These issues have greatly limited the capability of current multi-target tracking techniques in hand tracking. As an example, state-of-the-art approaches for people tracking handle indentity switching by exploiting the appearance cues using advanced object detectors. For hand tracking, such approaches will fail due to similar, or even identical hand appearances. The main contribution of our work is a global optimization framework based on binary quadratic programming (BQP) that seamlessly integrates appearance, motion and complex interactions between hands. Our approach effectively handles key challenges such as occlusion, detection failure, identity switching, and robustly tracks both hands in two challenging real-life scenarios: retail surveillance and sign languages. In addition, we demonstrate that an automatic method based on hand trajectory analysis outperforms state-of-the-art on checkout-related activity recognition in grocery stores.
doi_str_mv 10.1109/CVPR.2012.6247890
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247890</ieee_id><sourcerecordid>6247890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-9109bf3dc688118081dcfc73fd443c531ecd8974a6c4baf31afa7be373c161683</originalsourceid><addsrcrecordid>eNo1kN1KxDAQhSMquK59APEmL9CaSWJ-LqXorrCgiHq7TtO0RHfbmkZh394urnMzHL7DYc4QcgmsAGD2unx7ei44A14oLrWx7Iicg1RaAOeGH5PMavOvlTwhM2BK5MqCPSPZOH6waSYHs3xG3pfY1TRFdJ-ha2m1o1XoMO7o1zfWEVNwdIh9G3G73fO9OaSR4jBsgptw39HU0-gThg1Fl8JPSLtJu77twh5fkNMGN6PPDntOXu_vXsplvnpcPJS3qzxwMCm30zlVI2qnjAEwzEDtGqdFU0sp3I0A72pjtUTlZIWNAGxQV15o4UCBMmJOrv5yg_d-PcSwnVqsDw8Sv1xAWSI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hand tracking by binary quadratic programming and its application to retail activity recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Trinh, H. ; Quanfu Fan ; Gabbur, P. ; Pankanti, S.</creator><creatorcontrib>Trinh, H. ; Quanfu Fan ; Gabbur, P. ; Pankanti, S.</creatorcontrib><description>Substantial ambiguities arise in hand tracking due to issues such as small hand size, deformable hand shapes and similar hand appearances. These issues have greatly limited the capability of current multi-target tracking techniques in hand tracking. As an example, state-of-the-art approaches for people tracking handle indentity switching by exploiting the appearance cues using advanced object detectors. For hand tracking, such approaches will fail due to similar, or even identical hand appearances. The main contribution of our work is a global optimization framework based on binary quadratic programming (BQP) that seamlessly integrates appearance, motion and complex interactions between hands. Our approach effectively handles key challenges such as occlusion, detection failure, identity switching, and robustly tracks both hands in two challenging real-life scenarios: retail surveillance and sign languages. In addition, we demonstrate that an automatic method based on hand trajectory analysis outperforms state-of-the-art on checkout-related activity recognition in grocery stores.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247890</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Equations ; Image color analysis ; Mathematical model ; Switches ; Tracking ; Trajectory</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1902-1909</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247890$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247890$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trinh, H.</creatorcontrib><creatorcontrib>Quanfu Fan</creatorcontrib><creatorcontrib>Gabbur, P.</creatorcontrib><creatorcontrib>Pankanti, S.</creatorcontrib><title>Hand tracking by binary quadratic programming and its application to retail activity recognition</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Substantial ambiguities arise in hand tracking due to issues such as small hand size, deformable hand shapes and similar hand appearances. These issues have greatly limited the capability of current multi-target tracking techniques in hand tracking. As an example, state-of-the-art approaches for people tracking handle indentity switching by exploiting the appearance cues using advanced object detectors. For hand tracking, such approaches will fail due to similar, or even identical hand appearances. The main contribution of our work is a global optimization framework based on binary quadratic programming (BQP) that seamlessly integrates appearance, motion and complex interactions between hands. Our approach effectively handles key challenges such as occlusion, detection failure, identity switching, and robustly tracks both hands in two challenging real-life scenarios: retail surveillance and sign languages. In addition, we demonstrate that an automatic method based on hand trajectory analysis outperforms state-of-the-art on checkout-related activity recognition in grocery stores.</description><subject>Computational modeling</subject><subject>Equations</subject><subject>Image color analysis</subject><subject>Mathematical model</subject><subject>Switches</subject><subject>Tracking</subject><subject>Trajectory</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1KxDAQhSMquK59APEmL9CaSWJ-LqXorrCgiHq7TtO0RHfbmkZh394urnMzHL7DYc4QcgmsAGD2unx7ei44A14oLrWx7Iicg1RaAOeGH5PMavOvlTwhM2BK5MqCPSPZOH6waSYHs3xG3pfY1TRFdJ-ha2m1o1XoMO7o1zfWEVNwdIh9G3G73fO9OaSR4jBsgptw39HU0-gThg1Fl8JPSLtJu77twh5fkNMGN6PPDntOXu_vXsplvnpcPJS3qzxwMCm30zlVI2qnjAEwzEDtGqdFU0sp3I0A72pjtUTlZIWNAGxQV15o4UCBMmJOrv5yg_d-PcSwnVqsDw8Sv1xAWSI</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Trinh, H.</creator><creator>Quanfu Fan</creator><creator>Gabbur, P.</creator><creator>Pankanti, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Hand tracking by binary quadratic programming and its application to retail activity recognition</title><author>Trinh, H. ; Quanfu Fan ; Gabbur, P. ; Pankanti, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-9109bf3dc688118081dcfc73fd443c531ecd8974a6c4baf31afa7be373c161683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Equations</topic><topic>Image color analysis</topic><topic>Mathematical model</topic><topic>Switches</topic><topic>Tracking</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Trinh, H.</creatorcontrib><creatorcontrib>Quanfu Fan</creatorcontrib><creatorcontrib>Gabbur, P.</creatorcontrib><creatorcontrib>Pankanti, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trinh, H.</au><au>Quanfu Fan</au><au>Gabbur, P.</au><au>Pankanti, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hand tracking by binary quadratic programming and its application to retail activity recognition</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>1902</spage><epage>1909</epage><pages>1902-1909</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Substantial ambiguities arise in hand tracking due to issues such as small hand size, deformable hand shapes and similar hand appearances. These issues have greatly limited the capability of current multi-target tracking techniques in hand tracking. As an example, state-of-the-art approaches for people tracking handle indentity switching by exploiting the appearance cues using advanced object detectors. For hand tracking, such approaches will fail due to similar, or even identical hand appearances. The main contribution of our work is a global optimization framework based on binary quadratic programming (BQP) that seamlessly integrates appearance, motion and complex interactions between hands. Our approach effectively handles key challenges such as occlusion, detection failure, identity switching, and robustly tracks both hands in two challenging real-life scenarios: retail surveillance and sign languages. In addition, we demonstrate that an automatic method based on hand trajectory analysis outperforms state-of-the-art on checkout-related activity recognition in grocery stores.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247890</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1902-1909
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247890
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Equations
Image color analysis
Mathematical model
Switches
Tracking
Trajectory
title Hand tracking by binary quadratic programming and its application to retail activity recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hand%20tracking%20by%20binary%20quadratic%20programming%20and%20its%20application%20to%20retail%20activity%20recognition&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Trinh,%20H.&rft.date=2012-01-01&rft.spage=1902&rft.epage=1909&rft.pages=1902-1909&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247890&rft_dat=%3Cieee_6IE%3E6247890%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247890&rfr_iscdi=true