Tracking the articulated motion of two strongly interacting hands
We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1869 |
---|---|
container_issue | |
container_start_page | 1862 |
container_title | |
container_volume | |
creator | Oikonomidis, I. Kyriazis, N. Argyros, A. A. |
description | We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible. |
doi_str_mv | 10.1109/CVPR.2012.6247885 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247885</ieee_id><sourcerecordid>6247885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-a5e3e074fa724072a023ff0a2c7162a0d11c82d283dbe6f2638922f7de43bc8c3</originalsourceid><addsrcrecordid>eNo1kNtKAzEYhCMqWOs-gHiTF9g1_580h8uyaBUKilRvS5pDG93uym5E-vauWOdmGJhvLoaQa2AVADO39dvzS4UMsJIolNazE3IJQioOiBpPSWGU_s9SnJEJMMlLacBckGIY3tmoscEMTsh81Vv3kdotzbtAbZ-T-2psDp7uu5y6lnaR5u-ODrnv2m1zoKnNYUTyL7KzrR-uyHm0zRCKo0_J6_3dqn4ol0-Lx3q-LBNqkUs7CzwwJaJVKJhCy5DHyCw6BXJMHsBp9Ki53wQZUXJtEKPyQfCN045Pyc3fbgohrD_7tLf9YX18gP8AiaFNHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tracking the articulated motion of two strongly interacting hands</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oikonomidis, I. ; Kyriazis, N. ; Argyros, A. A.</creator><creatorcontrib>Oikonomidis, I. ; Kyriazis, N. ; Argyros, A. A.</creatorcontrib><description>We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247885</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Humans ; Joints ; Optimization ; Skin ; Tracking ; Visualization</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1862-1869</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oikonomidis, I.</creatorcontrib><creatorcontrib>Kyriazis, N.</creatorcontrib><creatorcontrib>Argyros, A. A.</creatorcontrib><title>Tracking the articulated motion of two strongly interacting hands</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.</description><subject>Computational modeling</subject><subject>Humans</subject><subject>Joints</subject><subject>Optimization</subject><subject>Skin</subject><subject>Tracking</subject><subject>Visualization</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKAzEYhCMqWOs-gHiTF9g1_580h8uyaBUKilRvS5pDG93uym5E-vauWOdmGJhvLoaQa2AVADO39dvzS4UMsJIolNazE3IJQioOiBpPSWGU_s9SnJEJMMlLacBckGIY3tmoscEMTsh81Vv3kdotzbtAbZ-T-2psDp7uu5y6lnaR5u-ODrnv2m1zoKnNYUTyL7KzrR-uyHm0zRCKo0_J6_3dqn4ol0-Lx3q-LBNqkUs7CzwwJaJVKJhCy5DHyCw6BXJMHsBp9Ki53wQZUXJtEKPyQfCN045Pyc3fbgohrD_7tLf9YX18gP8AiaFNHQ</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Oikonomidis, I.</creator><creator>Kyriazis, N.</creator><creator>Argyros, A. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Tracking the articulated motion of two strongly interacting hands</title><author>Oikonomidis, I. ; Kyriazis, N. ; Argyros, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-a5e3e074fa724072a023ff0a2c7162a0d11c82d283dbe6f2638922f7de43bc8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Humans</topic><topic>Joints</topic><topic>Optimization</topic><topic>Skin</topic><topic>Tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Oikonomidis, I.</creatorcontrib><creatorcontrib>Kyriazis, N.</creatorcontrib><creatorcontrib>Argyros, A. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oikonomidis, I.</au><au>Kyriazis, N.</au><au>Argyros, A. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tracking the articulated motion of two strongly interacting hands</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>1862</spage><epage>1869</epage><pages>1862-1869</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247885</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1862-1869 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_6247885 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Humans Joints Optimization Skin Tracking Visualization |
title | Tracking the articulated motion of two strongly interacting hands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tracking%20the%20articulated%20motion%20of%20two%20strongly%20interacting%20hands&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Oikonomidis,%20I.&rft.date=2012-06&rft.spage=1862&rft.epage=1869&rft.pages=1862-1869&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247885&rft_dat=%3Cieee_6IE%3E6247885%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247885&rfr_iscdi=true |