Tracking the articulated motion of two strongly interacting hands

We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oikonomidis, I., Kyriazis, N., Argyros, A. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1869
container_issue
container_start_page 1862
container_title
container_volume
creator Oikonomidis, I.
Kyriazis, N.
Argyros, A. A.
description We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.
doi_str_mv 10.1109/CVPR.2012.6247885
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247885</ieee_id><sourcerecordid>6247885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-a5e3e074fa724072a023ff0a2c7162a0d11c82d283dbe6f2638922f7de43bc8c3</originalsourceid><addsrcrecordid>eNo1kNtKAzEYhCMqWOs-gHiTF9g1_580h8uyaBUKilRvS5pDG93uym5E-vauWOdmGJhvLoaQa2AVADO39dvzS4UMsJIolNazE3IJQioOiBpPSWGU_s9SnJEJMMlLacBckGIY3tmoscEMTsh81Vv3kdotzbtAbZ-T-2psDp7uu5y6lnaR5u-ODrnv2m1zoKnNYUTyL7KzrR-uyHm0zRCKo0_J6_3dqn4ol0-Lx3q-LBNqkUs7CzwwJaJVKJhCy5DHyCw6BXJMHsBp9Ki53wQZUXJtEKPyQfCN045Pyc3fbgohrD_7tLf9YX18gP8AiaFNHQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tracking the articulated motion of two strongly interacting hands</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oikonomidis, I. ; Kyriazis, N. ; Argyros, A. A.</creator><creatorcontrib>Oikonomidis, I. ; Kyriazis, N. ; Argyros, A. A.</creatorcontrib><description>We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247885</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Humans ; Joints ; Optimization ; Skin ; Tracking ; Visualization</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1862-1869</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oikonomidis, I.</creatorcontrib><creatorcontrib>Kyriazis, N.</creatorcontrib><creatorcontrib>Argyros, A. A.</creatorcontrib><title>Tracking the articulated motion of two strongly interacting hands</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.</description><subject>Computational modeling</subject><subject>Humans</subject><subject>Joints</subject><subject>Optimization</subject><subject>Skin</subject><subject>Tracking</subject><subject>Visualization</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKAzEYhCMqWOs-gHiTF9g1_580h8uyaBUKilRvS5pDG93uym5E-vauWOdmGJhvLoaQa2AVADO39dvzS4UMsJIolNazE3IJQioOiBpPSWGU_s9SnJEJMMlLacBckGIY3tmoscEMTsh81Vv3kdotzbtAbZ-T-2psDp7uu5y6lnaR5u-ODrnv2m1zoKnNYUTyL7KzrR-uyHm0zRCKo0_J6_3dqn4ol0-Lx3q-LBNqkUs7CzwwJaJVKJhCy5DHyCw6BXJMHsBp9Ki53wQZUXJtEKPyQfCN045Pyc3fbgohrD_7tLf9YX18gP8AiaFNHQ</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Oikonomidis, I.</creator><creator>Kyriazis, N.</creator><creator>Argyros, A. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Tracking the articulated motion of two strongly interacting hands</title><author>Oikonomidis, I. ; Kyriazis, N. ; Argyros, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-a5e3e074fa724072a023ff0a2c7162a0d11c82d283dbe6f2638922f7de43bc8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Humans</topic><topic>Joints</topic><topic>Optimization</topic><topic>Skin</topic><topic>Tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Oikonomidis, I.</creatorcontrib><creatorcontrib>Kyriazis, N.</creatorcontrib><creatorcontrib>Argyros, A. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oikonomidis, I.</au><au>Kyriazis, N.</au><au>Argyros, A. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tracking the articulated motion of two strongly interacting hands</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>1862</spage><epage>1869</epage><pages>1862-1869</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>We propose a method that relies on markerless visual observations to track the full articulation of two hands that interact with each-other in a complex, unconstrained manner. We formulate this as an optimization problem whose 54-dimensional parameter space represents all possible configurations of two hands, each represented as a kinematic structure with 26 Degrees of Freedom (DoFs). To solve this problem, we employ Particle Swarm Optimization (PSO), an evolutionary, stochastic optimization method with the objective of finding the two-hands configuration that best explains observations provided by an RGB-D sensor. To the best of our knowledge, the proposed method is the first to attempt and achieve the articulated motion tracking of two strongly interacting hands. Extensive quantitative and qualitative experiments with simulated and real world image sequences demonstrate that an accurate and efficient solution of this problem is indeed feasible.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247885</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1862-1869
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247885
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Humans
Joints
Optimization
Skin
Tracking
Visualization
title Tracking the articulated motion of two strongly interacting hands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tracking%20the%20articulated%20motion%20of%20two%20strongly%20interacting%20hands&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Oikonomidis,%20I.&rft.date=2012-06&rft.spage=1862&rft.epage=1869&rft.pages=1862-1869&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247885&rft_dat=%3Cieee_6IE%3E6247885%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247885&rfr_iscdi=true