Dynamic scene understanding: The role of orientation features in space and time in scene classification

Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Derpanis, K. G., Lecce, M., Daniilidis, K., Wildes, R. P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1313
container_issue
container_start_page 1306
container_title
container_volume
creator Derpanis, K. G.
Lecce, M.
Daniilidis, K.
Wildes, R. P.
description Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.
doi_str_mv 10.1109/CVPR.2012.6247815
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247815</ieee_id><sourcerecordid>6247815</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-40ee82d2fa68e5acfdc22ae16299ac0f5073c755054cc7d5508216056fe04303</originalsourceid><addsrcrecordid>eNotkM1OwzAQhI0AiVLyAIiLXyBlvYmdmBsKv1IlEIq4VpazLkaJU8XpoW9PFLKX2fm0M4dl7FbARgjQ99X359cGQeBGYV6UQp6xa5GrIhOIJZ6zRE9w8Sq_YCsBKkuVFvqKJTH-wjTTBWhcsf3TKZjOWx4tBeLH0NAQRxMaH_YPvP4hPvQt8d7xfvAURjP6PnBHZjwOFLkPPB6MJT4l-Og7mslcZVsTo3fezpEbdulMGylZdM3ql-e6eku3H6_v1eM29SjKMc2BqMQGnVElSWNdYxENCYVaGwtOQpHZQkqQubVFMy0lCgVSOYI8g2zN7v5rPRHtDoPvzHDaLW_K_gBZMlog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic scene understanding: The role of orientation features in space and time in scene classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Derpanis, K. G. ; Lecce, M. ; Daniilidis, K. ; Wildes, R. P.</creator><creatorcontrib>Derpanis, K. G. ; Lecce, M. ; Daniilidis, K. ; Wildes, R. P.</creatorcontrib><description>Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247815</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamics ; Energy measurement ; Image sequences ; Layout ; Spatiotemporal phenomena ; Videos ; Visualization</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1306-1313</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Derpanis, K. G.</creatorcontrib><creatorcontrib>Lecce, M.</creatorcontrib><creatorcontrib>Daniilidis, K.</creatorcontrib><creatorcontrib>Wildes, R. P.</creatorcontrib><title>Dynamic scene understanding: The role of orientation features in space and time in scene classification</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.</description><subject>Dynamics</subject><subject>Energy measurement</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Spatiotemporal phenomena</subject><subject>Videos</subject><subject>Visualization</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1OwzAQhI0AiVLyAIiLXyBlvYmdmBsKv1IlEIq4VpazLkaJU8XpoW9PFLKX2fm0M4dl7FbARgjQ99X359cGQeBGYV6UQp6xa5GrIhOIJZ6zRE9w8Sq_YCsBKkuVFvqKJTH-wjTTBWhcsf3TKZjOWx4tBeLH0NAQRxMaH_YPvP4hPvQt8d7xfvAURjP6PnBHZjwOFLkPPB6MJT4l-Og7mslcZVsTo3fezpEbdulMGylZdM3ql-e6eku3H6_v1eM29SjKMc2BqMQGnVElSWNdYxENCYVaGwtOQpHZQkqQubVFMy0lCgVSOYI8g2zN7v5rPRHtDoPvzHDaLW_K_gBZMlog</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Derpanis, K. G.</creator><creator>Lecce, M.</creator><creator>Daniilidis, K.</creator><creator>Wildes, R. P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Dynamic scene understanding: The role of orientation features in space and time in scene classification</title><author>Derpanis, K. G. ; Lecce, M. ; Daniilidis, K. ; Wildes, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-40ee82d2fa68e5acfdc22ae16299ac0f5073c755054cc7d5508216056fe04303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamics</topic><topic>Energy measurement</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Spatiotemporal phenomena</topic><topic>Videos</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Derpanis, K. G.</creatorcontrib><creatorcontrib>Lecce, M.</creatorcontrib><creatorcontrib>Daniilidis, K.</creatorcontrib><creatorcontrib>Wildes, R. P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Derpanis, K. G.</au><au>Lecce, M.</au><au>Daniilidis, K.</au><au>Wildes, R. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic scene understanding: The role of orientation features in space and time in scene classification</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>1306</spage><epage>1313</epage><pages>1306-1313</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247815</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1306-1313
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247815
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dynamics
Energy measurement
Image sequences
Layout
Spatiotemporal phenomena
Videos
Visualization
title Dynamic scene understanding: The role of orientation features in space and time in scene classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20scene%20understanding:%20The%20role%20of%20orientation%20features%20in%20space%20and%20time%20in%20scene%20classification&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Derpanis,%20K.%20G.&rft.date=2012-06&rft.spage=1306&rft.epage=1313&rft.pages=1306-1313&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247815&rft_dat=%3Cieee_6IE%3E6247815%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247815&rfr_iscdi=true