Dynamic scene understanding: The role of orientation features in space and time in scene classification
Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1313 |
---|---|
container_issue | |
container_start_page | 1306 |
container_title | |
container_volume | |
creator | Derpanis, K. G. Lecce, M. Daniilidis, K. Wildes, R. P. |
description | Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods. |
doi_str_mv | 10.1109/CVPR.2012.6247815 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247815</ieee_id><sourcerecordid>6247815</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-40ee82d2fa68e5acfdc22ae16299ac0f5073c755054cc7d5508216056fe04303</originalsourceid><addsrcrecordid>eNotkM1OwzAQhI0AiVLyAIiLXyBlvYmdmBsKv1IlEIq4VpazLkaJU8XpoW9PFLKX2fm0M4dl7FbARgjQ99X359cGQeBGYV6UQp6xa5GrIhOIJZ6zRE9w8Sq_YCsBKkuVFvqKJTH-wjTTBWhcsf3TKZjOWx4tBeLH0NAQRxMaH_YPvP4hPvQt8d7xfvAURjP6PnBHZjwOFLkPPB6MJT4l-Og7mslcZVsTo3fezpEbdulMGylZdM3ql-e6eku3H6_v1eM29SjKMc2BqMQGnVElSWNdYxENCYVaGwtOQpHZQkqQubVFMy0lCgVSOYI8g2zN7v5rPRHtDoPvzHDaLW_K_gBZMlog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic scene understanding: The role of orientation features in space and time in scene classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Derpanis, K. G. ; Lecce, M. ; Daniilidis, K. ; Wildes, R. P.</creator><creatorcontrib>Derpanis, K. G. ; Lecce, M. ; Daniilidis, K. ; Wildes, R. P.</creatorcontrib><description>Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247815</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamics ; Energy measurement ; Image sequences ; Layout ; Spatiotemporal phenomena ; Videos ; Visualization</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1306-1313</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Derpanis, K. G.</creatorcontrib><creatorcontrib>Lecce, M.</creatorcontrib><creatorcontrib>Daniilidis, K.</creatorcontrib><creatorcontrib>Wildes, R. P.</creatorcontrib><title>Dynamic scene understanding: The role of orientation features in space and time in scene classification</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.</description><subject>Dynamics</subject><subject>Energy measurement</subject><subject>Image sequences</subject><subject>Layout</subject><subject>Spatiotemporal phenomena</subject><subject>Videos</subject><subject>Visualization</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1OwzAQhI0AiVLyAIiLXyBlvYmdmBsKv1IlEIq4VpazLkaJU8XpoW9PFLKX2fm0M4dl7FbARgjQ99X359cGQeBGYV6UQp6xa5GrIhOIJZ6zRE9w8Sq_YCsBKkuVFvqKJTH-wjTTBWhcsf3TKZjOWx4tBeLH0NAQRxMaH_YPvP4hPvQt8d7xfvAURjP6PnBHZjwOFLkPPB6MJT4l-Og7mslcZVsTo3fezpEbdulMGylZdM3ql-e6eku3H6_v1eM29SjKMc2BqMQGnVElSWNdYxENCYVaGwtOQpHZQkqQubVFMy0lCgVSOYI8g2zN7v5rPRHtDoPvzHDaLW_K_gBZMlog</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Derpanis, K. G.</creator><creator>Lecce, M.</creator><creator>Daniilidis, K.</creator><creator>Wildes, R. P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Dynamic scene understanding: The role of orientation features in space and time in scene classification</title><author>Derpanis, K. G. ; Lecce, M. ; Daniilidis, K. ; Wildes, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-40ee82d2fa68e5acfdc22ae16299ac0f5073c755054cc7d5508216056fe04303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamics</topic><topic>Energy measurement</topic><topic>Image sequences</topic><topic>Layout</topic><topic>Spatiotemporal phenomena</topic><topic>Videos</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Derpanis, K. G.</creatorcontrib><creatorcontrib>Lecce, M.</creatorcontrib><creatorcontrib>Daniilidis, K.</creatorcontrib><creatorcontrib>Wildes, R. P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Derpanis, K. G.</au><au>Lecce, M.</au><au>Daniilidis, K.</au><au>Wildes, R. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic scene understanding: The role of orientation features in space and time in scene classification</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>1306</spage><epage>1313</epage><pages>1306-1313</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Natural scene classification is a fundamental challenge in computer vision. By far, the majority of studies have limited their scope to scenes from single image stills and thereby ignore potentially informative temporal cues. The current paper is concerned with determining the degree of performance gain in considering short videos for recognizing natural scenes. Towards this end, the impact of multiscale orientation measurements on scene classification is systematically investigated, as related to: (i) spatial appearance, (ii) temporal dynamics and (iii) joint spatial appearance and dynamics. These measurements in visual space, x-y, and spacetime, x-y-t, are recovered by a bank of spatiotemporal oriented energy filters. In addition, a new data set is introduced that contains 420 image sequences spanning fourteen scene categories, with temporal scene information due to objects and surfaces decoupled from camera-induced ones. This data set is used to evaluate classification performance of the various orientation-related representations, as well as state-of-the-art alternatives. It is shown that a notable performance increase is realized by spatiotemporal approaches in comparison to purely spatial or purely temporal methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247815</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1306-1313 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_6247815 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Dynamics Energy measurement Image sequences Layout Spatiotemporal phenomena Videos Visualization |
title | Dynamic scene understanding: The role of orientation features in space and time in scene classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20scene%20understanding:%20The%20role%20of%20orientation%20features%20in%20space%20and%20time%20in%20scene%20classification&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Derpanis,%20K.%20G.&rft.date=2012-06&rft.spage=1306&rft.epage=1313&rft.pages=1306-1313&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247815&rft_dat=%3Cieee_6IE%3E6247815%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247815&rfr_iscdi=true |