A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images

The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dijia Wu, Liu, D., Puskas, Z., Chao Lu, Wimmer, A., Tietjen, C., Soza, G., Zhou, S. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 987
container_issue
container_start_page 980
container_title
container_volume
creator Dijia Wu
Liu, D.
Puskas, Z.
Chao Lu
Wimmer, A.
Tietjen, C.
Soza, G.
Zhou, S. K.
description The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning based detection exploits local image cues and top-down deformable template matching imposes global shape constraints. To adapt to the shape deformation of different rib cages whereas maintain high computational efficiency, we employ a Markov Random Field (MRF) based articulated rigid transformation method followed by Active Contour Model (ACM) deformation. Compared with traditional methods that each rib is individually detected, traced and labeled, the new approach is not only much more robust due to prior shape constraints of the whole rib cage, but removes tedious post-processing such as rib pairing and ordering steps because each rib is automatically labeled during the template matching. For experimental validation, we create an annotated database of 112 challenging volumes with ribs of various sizes, shapes, and pathologies such as metastases and fractures. The proposed approach shows orders of magnitude higher detection and labeling accuracy than state-of-the-art solutions and runs about 40 seconds for a complete rib cage on the average.
doi_str_mv 10.1109/CVPR.2012.6247774
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247774</ieee_id><sourcerecordid>6247774</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2cc7ce2c698a61d8e7ced7730259105016413c455c783770a996966b6cd95f823</originalsourceid><addsrcrecordid>eNo1kN1KAzEQhSMqWGsfQLyZF9ian91kc1kW_6CgSPW2ZJNpG8lmSzaKvr1brHMznMM358AQcs3onDGqb5v3l9c5p4zPJS-VUuUJuWSlVIJxXvNTMtOq_teyPCMTRqUopGb6gsyG4YOOMxJU8wn5WkBAk6KPW2jNgA4cbvrUmTYgZOz2wWSEzmS7OyAd5l3vYCTAfOZ-9L2F5FuwGDOm4CMCfudkbPZ9BBMdBNNiONz6CM0KfGe2OFyR840JA86Oe0re7u9WzWOxfH54ahbLwjNV5YJbqyxyK3VtJHM1jsopJSivNKMVZbJkwpZVZVUtlKJGa6mlbKV1utrUXEzJzV-uR8T1Po3t6Wd9fJv4BcdSX0M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dijia Wu ; Liu, D. ; Puskas, Z. ; Chao Lu ; Wimmer, A. ; Tietjen, C. ; Soza, G. ; Zhou, S. K.</creator><creatorcontrib>Dijia Wu ; Liu, D. ; Puskas, Z. ; Chao Lu ; Wimmer, A. ; Tietjen, C. ; Soza, G. ; Zhou, S. K.</creatorcontrib><description>The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning based detection exploits local image cues and top-down deformable template matching imposes global shape constraints. To adapt to the shape deformation of different rib cages whereas maintain high computational efficiency, we employ a Markov Random Field (MRF) based articulated rigid transformation method followed by Active Contour Model (ACM) deformation. Compared with traditional methods that each rib is individually detected, traced and labeled, the new approach is not only much more robust due to prior shape constraints of the whole rib cage, but removes tedious post-processing such as rib pairing and ordering steps because each rib is automatically labeled during the template matching. For experimental validation, we create an annotated database of 112 challenging volumes with ribs of various sizes, shapes, and pathologies such as metastases and fractures. The proposed approach shows orders of magnitude higher detection and labeling accuracy than state-of-the-art solutions and runs about 40 seconds for a complete rib cage on the average.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247774</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; Feature extraction ; Labeling ; Pathology ; Ribs ; Robustness ; Shape</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.980-987</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247774$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247774$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dijia Wu</creatorcontrib><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Puskas, Z.</creatorcontrib><creatorcontrib>Chao Lu</creatorcontrib><creatorcontrib>Wimmer, A.</creatorcontrib><creatorcontrib>Tietjen, C.</creatorcontrib><creatorcontrib>Soza, G.</creatorcontrib><creatorcontrib>Zhou, S. K.</creatorcontrib><title>A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning based detection exploits local image cues and top-down deformable template matching imposes global shape constraints. To adapt to the shape deformation of different rib cages whereas maintain high computational efficiency, we employ a Markov Random Field (MRF) based articulated rigid transformation method followed by Active Contour Model (ACM) deformation. Compared with traditional methods that each rib is individually detected, traced and labeled, the new approach is not only much more robust due to prior shape constraints of the whole rib cage, but removes tedious post-processing such as rib pairing and ordering steps because each rib is automatically labeled during the template matching. For experimental validation, we create an annotated database of 112 challenging volumes with ribs of various sizes, shapes, and pathologies such as metastases and fractures. The proposed approach shows orders of magnitude higher detection and labeling accuracy than state-of-the-art solutions and runs about 40 seconds for a complete rib cage on the average.</description><subject>Computed tomography</subject><subject>Feature extraction</subject><subject>Labeling</subject><subject>Pathology</subject><subject>Ribs</subject><subject>Robustness</subject><subject>Shape</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1KAzEQhSMqWGsfQLyZF9ian91kc1kW_6CgSPW2ZJNpG8lmSzaKvr1brHMznMM358AQcs3onDGqb5v3l9c5p4zPJS-VUuUJuWSlVIJxXvNTMtOq_teyPCMTRqUopGb6gsyG4YOOMxJU8wn5WkBAk6KPW2jNgA4cbvrUmTYgZOz2wWSEzmS7OyAd5l3vYCTAfOZ-9L2F5FuwGDOm4CMCfudkbPZ9BBMdBNNiONz6CM0KfGe2OFyR840JA86Oe0re7u9WzWOxfH54ahbLwjNV5YJbqyxyK3VtJHM1jsopJSivNKMVZbJkwpZVZVUtlKJGa6mlbKV1utrUXEzJzV-uR8T1Po3t6Wd9fJv4BcdSX0M</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Dijia Wu</creator><creator>Liu, D.</creator><creator>Puskas, Z.</creator><creator>Chao Lu</creator><creator>Wimmer, A.</creator><creator>Tietjen, C.</creator><creator>Soza, G.</creator><creator>Zhou, S. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images</title><author>Dijia Wu ; Liu, D. ; Puskas, Z. ; Chao Lu ; Wimmer, A. ; Tietjen, C. ; Soza, G. ; Zhou, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2cc7ce2c698a61d8e7ced7730259105016413c455c783770a996966b6cd95f823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computed tomography</topic><topic>Feature extraction</topic><topic>Labeling</topic><topic>Pathology</topic><topic>Ribs</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Dijia Wu</creatorcontrib><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Puskas, Z.</creatorcontrib><creatorcontrib>Chao Lu</creatorcontrib><creatorcontrib>Wimmer, A.</creatorcontrib><creatorcontrib>Tietjen, C.</creatorcontrib><creatorcontrib>Soza, G.</creatorcontrib><creatorcontrib>Zhou, S. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dijia Wu</au><au>Liu, D.</au><au>Puskas, Z.</au><au>Chao Lu</au><au>Wimmer, A.</au><au>Tietjen, C.</au><au>Soza, G.</au><au>Zhou, S. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>980</spage><epage>987</epage><pages>980-987</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>The automatic extraction and labeling of the rib centerlines is a useful yet challenging task in many clinical applications. In this paper, we propose a new approach integrating rib seed point detection and template matching to detect and identify each rib in chest CT scans. The bottom-up learning based detection exploits local image cues and top-down deformable template matching imposes global shape constraints. To adapt to the shape deformation of different rib cages whereas maintain high computational efficiency, we employ a Markov Random Field (MRF) based articulated rigid transformation method followed by Active Contour Model (ACM) deformation. Compared with traditional methods that each rib is individually detected, traced and labeled, the new approach is not only much more robust due to prior shape constraints of the whole rib cage, but removes tedious post-processing such as rib pairing and ordering steps because each rib is automatically labeled during the template matching. For experimental validation, we create an annotated database of 112 challenging volumes with ribs of various sizes, shapes, and pathologies such as metastases and fractures. The proposed approach shows orders of magnitude higher detection and labeling accuracy than state-of-the-art solutions and runs about 40 seconds for a complete rib cage on the average.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247774</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.980-987
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247774
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computed tomography
Feature extraction
Labeling
Pathology
Ribs
Robustness
Shape
title A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20learning%20based%20deformable%20template%20matching%20method%20for%20automatic%20rib%20centerline%20extraction%20and%20labeling%20in%20CT%20images&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Dijia%20Wu&rft.date=2012-06&rft.spage=980&rft.epage=987&rft.pages=980-987&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247774&rft_dat=%3Cieee_6IE%3E6247774%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247774&rfr_iscdi=true