Actionable saliency detection: Independent motion detection without independent motion estimation

We present a model and an algorithm to detect salient regions in video taken from a moving camera. In particular, we are interested in capturing small objects that move independently in the scene, such as vehicles and people as seen from aerial or ground vehicles. Many of the scenarios of interest c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Georgiadis, G., Ayvaci, A., Soatto, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue
container_start_page 646
container_title
container_volume
creator Georgiadis, G.
Ayvaci, A.
Soatto, S.
description We present a model and an algorithm to detect salient regions in video taken from a moving camera. In particular, we are interested in capturing small objects that move independently in the scene, such as vehicles and people as seen from aerial or ground vehicles. Many of the scenarios of interest challenge existing schemes based on background subtraction (background motion too complex), multi-body motion estimation (insufficient parallax), and occlusion detection (uniformly textured background regions). We adopt a robust statistical inference approach to simultaneously estimate a maximally reduced regressor, and select regions that violate the null hypothesis (co-visibility under an epipolar domain deformation) as "salient". We show that our algorithm can perform even in the absence of camera calibration information: while the resulting motion estimates would be incorrect, the partition of the domain into salient vs. non-salient is unaffected. We demonstrate our algorithm on video footage from helicopters, airplanes, and ground vehicles.
doi_str_mv 10.1109/CVPR.2012.6247732
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247732</ieee_id><sourcerecordid>6247732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-9257c07e0b1b37fe1acb2f284c24673a4d27e785b687c12e166fb1a2041207503</originalsourceid><addsrcrecordid>eNplUMFOwzAMDQIkxugHIC79gZbYSZOG2zQxmDQJhIDrlKSuCOraaQ1C-3taGOKAD8_289OzbMYugecA3FzPXx-fcuSAuUKptcAjdg5SaQGIJR6zxOjyt1fyhE2AK5EpA-aMJX3_zocYFNzghNmZj6FrrWso7W0TqPX7tKJI3_RNumwr2tIAbUw33cj9TdPPEN-6j5iG_yLqY9jYsbxgp7VtekoOecpeFrfP8_ts9XC3nM9WmUcUMTNYaM81cQdO6JrAeoc1ltLjeIqVFWrSZeFUqT0ggVK1A4tcAnJdcDFlVz--gYjW292wfrdfHz4kvgAGaFkJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Actionable saliency detection: Independent motion detection without independent motion estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Georgiadis, G. ; Ayvaci, A. ; Soatto, S.</creator><creatorcontrib>Georgiadis, G. ; Ayvaci, A. ; Soatto, S.</creatorcontrib><description>We present a model and an algorithm to detect salient regions in video taken from a moving camera. In particular, we are interested in capturing small objects that move independently in the scene, such as vehicles and people as seen from aerial or ground vehicles. Many of the scenarios of interest challenge existing schemes based on background subtraction (background motion too complex), multi-body motion estimation (insufficient parallax), and occlusion detection (uniformly textured background regions). We adopt a robust statistical inference approach to simultaneously estimate a maximally reduced regressor, and select regions that violate the null hypothesis (co-visibility under an epipolar domain deformation) as "salient". We show that our algorithm can perform even in the absence of camera calibration information: while the resulting motion estimates would be incorrect, the partition of the domain into salient vs. non-salient is unaffected. We demonstrate our algorithm on video footage from helicopters, airplanes, and ground vehicles.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247732</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Estimation ; Mathematical model ; Motion estimation ; Robustness ; Trajectory ; Visualization</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.646-653</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-9257c07e0b1b37fe1acb2f284c24673a4d27e785b687c12e166fb1a2041207503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Georgiadis, G.</creatorcontrib><creatorcontrib>Ayvaci, A.</creatorcontrib><creatorcontrib>Soatto, S.</creatorcontrib><title>Actionable saliency detection: Independent motion detection without independent motion estimation</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>We present a model and an algorithm to detect salient regions in video taken from a moving camera. In particular, we are interested in capturing small objects that move independently in the scene, such as vehicles and people as seen from aerial or ground vehicles. Many of the scenarios of interest challenge existing schemes based on background subtraction (background motion too complex), multi-body motion estimation (insufficient parallax), and occlusion detection (uniformly textured background regions). We adopt a robust statistical inference approach to simultaneously estimate a maximally reduced regressor, and select regions that violate the null hypothesis (co-visibility under an epipolar domain deformation) as "salient". We show that our algorithm can perform even in the absence of camera calibration information: while the resulting motion estimates would be incorrect, the partition of the domain into salient vs. non-salient is unaffected. We demonstrate our algorithm on video footage from helicopters, airplanes, and ground vehicles.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Motion estimation</subject><subject>Robustness</subject><subject>Trajectory</subject><subject>Visualization</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNplUMFOwzAMDQIkxugHIC79gZbYSZOG2zQxmDQJhIDrlKSuCOraaQ1C-3taGOKAD8_289OzbMYugecA3FzPXx-fcuSAuUKptcAjdg5SaQGIJR6zxOjyt1fyhE2AK5EpA-aMJX3_zocYFNzghNmZj6FrrWso7W0TqPX7tKJI3_RNumwr2tIAbUw33cj9TdPPEN-6j5iG_yLqY9jYsbxgp7VtekoOecpeFrfP8_ts9XC3nM9WmUcUMTNYaM81cQdO6JrAeoc1ltLjeIqVFWrSZeFUqT0ggVK1A4tcAnJdcDFlVz--gYjW292wfrdfHz4kvgAGaFkJ</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Georgiadis, G.</creator><creator>Ayvaci, A.</creator><creator>Soatto, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Actionable saliency detection: Independent motion detection without independent motion estimation</title><author>Georgiadis, G. ; Ayvaci, A. ; Soatto, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-9257c07e0b1b37fe1acb2f284c24673a4d27e785b687c12e166fb1a2041207503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Motion estimation</topic><topic>Robustness</topic><topic>Trajectory</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgiadis, G.</creatorcontrib><creatorcontrib>Ayvaci, A.</creatorcontrib><creatorcontrib>Soatto, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgiadis, G.</au><au>Ayvaci, A.</au><au>Soatto, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Actionable saliency detection: Independent motion detection without independent motion estimation</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>646</spage><epage>653</epage><pages>646-653</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>We present a model and an algorithm to detect salient regions in video taken from a moving camera. In particular, we are interested in capturing small objects that move independently in the scene, such as vehicles and people as seen from aerial or ground vehicles. Many of the scenarios of interest challenge existing schemes based on background subtraction (background motion too complex), multi-body motion estimation (insufficient parallax), and occlusion detection (uniformly textured background regions). We adopt a robust statistical inference approach to simultaneously estimate a maximally reduced regressor, and select regions that violate the null hypothesis (co-visibility under an epipolar domain deformation) as "salient". We show that our algorithm can perform even in the absence of camera calibration information: while the resulting motion estimates would be incorrect, the partition of the domain into salient vs. non-salient is unaffected. We demonstrate our algorithm on video footage from helicopters, airplanes, and ground vehicles.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247732</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.646-653
issn 1063-6919
language eng
recordid cdi_ieee_primary_6247732
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Estimation
Mathematical model
Motion estimation
Robustness
Trajectory
Visualization
title Actionable saliency detection: Independent motion detection without independent motion estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Actionable%20saliency%20detection:%20Independent%20motion%20detection%20without%20independent%20motion%20estimation&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Georgiadis,%20G.&rft.date=2012-06&rft.spage=646&rft.epage=653&rft.pages=646-653&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247732&rft_dat=%3Cieee_6IE%3E6247732%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247732&rfr_iscdi=true