Compressive depth map acquisition using a single photon-counting detector: Parametric signal processing meets sparsity

Active range acquisition systems such as light detection and ranging (LIDAR) and time-of-flight (TOF) cameras achieve high depth resolution but suffer from poor spatial resolution. In this paper we introduce a new range acquisition architecture that does not rely on scene raster scanning as in LIDAR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Colaco, A., Kirmani, A., Howland, G. A., Howell, J. C., Goyal, V. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active range acquisition systems such as light detection and ranging (LIDAR) and time-of-flight (TOF) cameras achieve high depth resolution but suffer from poor spatial resolution. In this paper we introduce a new range acquisition architecture that does not rely on scene raster scanning as in LIDAR or on a two-dimensional array of sensors as used in TOF cameras. Instead, we achieve spatial resolution through patterned sensing of the scene using a digital micromirror device (DMD) array. Our depth map reconstruction uses parametric signal modeling to recover the set of distinct depth ranges present in the scene. Then, using a convex program that exploits the sparsity of the Laplacian of the depth map, we recover the spatial content at the estimated depth ranges. In our experiments we acquired 64×64-pixel depth maps of fronto-parallel scenes at ranges up to 2.1 M using a pulsed laser, a DMD array and a single photon-counting detector. We also demonstrated imaging in the presence of unknown partially-transmissive occluders. The prototype and results provide promising directions for non-scanning, low-complexity range acquisition devices for various computer vision applications.
ISSN:1063-6919
DOI:10.1109/CVPR.2012.6247663